<< bdiag Eigenvalue and Singular Value pbig >>

Scilab Help >> Linear Algebra > Eigenvalue and Singular Value > hess

hess

Hessenberg form

Syntax

H = hess(A)
[U,H] = hess(A)

Arguments

A

real or complex square matrix

H

real or complex square matrix

U

orthogonal or unitary square matrix

Description

[U,H] = hess(A) produces a unitary matrix U and a Hessenberg matrix H so that A = U*H*U' and U'*U = Identity. By itself, hess(A) returns H.

The Hessenberg form of a matrix is zero below the first subdiagonal. If the matrix is symmetric or Hermitian, the form is tridiagonal.

References

hess function is based on the Lapack routines DGEHRD, DORGHR for real matrices and ZGEHRD, ZORGHR for the complex case.

Examples

A=rand(3,3);[U,H]=hess(A);
and( abs(U*H*U'-A)<1.d-10 )

See also

Used Functions

hess function is based on the Lapack routines DGEHRD, DORGHR for real matrices and ZGEHRD, ZORGHR for the complex case.


Report an issue
<< bdiag Eigenvalue and Singular Value pbig >>