<< Дифференциальное счисление, интегрирование Дифференциальное счисление, интегрирование dae >>

Scilab Help >> Дифференциальное счисление, интегрирование > bvode

bvode

задачи граничных значений для ОДУ с помощью метода коллокации

bvodeS

упрощённый вызов bvode

Синтаксис

zu = bvode(xpoints,N,m,x_low,x_up,zeta,ipar,ltol,tol,fixpnt,fsub,dfsub,gsub,dgsub,guess)

zu = bvodeS(xpoints,m,N,x_low,x_up,fsub,gsub,zeta, <optional_args>)

Аргументы

zu

вектор-столбец длиной M. Решение ОДУ, вычисленное по сетке, заданной точками. Она содержит z(u(x)) для каждой искомой точки;

xpoints

массив, который содержит точки для которых нужно найти решение;

N

скаляр с целочисленным значением, количество дифференциальных уравнений (N <= 20).

m

вектор размером N с целочисленными элементами. Это вектор порядка каждого из дифференциальных уравнений: m(i) указывает порядок i-го дифференциального уравнения. Далее, M будет представлять сумму элементов m.

x_low

скаляр: левый конец интервала

x_up

скаляр: правый конец интервала

zeta

вектор размером M; zeta(j) указывает j-тую точку граничного условия (граничную точку). Необходимо, чтобы выполнялось условие x_low<=zeta(j)<=zeta(j+1)<=x_up.

Все точки граничных условий должны составлять сетку точек во всех используемых сетках, см. ниже описание ipar(11) и fixpnt.

ipar

массив с 11-ю целочисленными элементами:

[nonlin, collpnt, subint, ntol, ndimf, ndimi, iprint, iread, iguess, rstart,nfxpnt]

nonlin: ipar(1)

0, если задача линейна; 1, если задача нелинейна.

collpnt: ipar(2)

Задаёт количество рядом расположенных точек на подынтервале, где max(m(j)) <= collpnt <= 7.

Если ipar(2)=0, то collpnt установлен равным max( max(m(j))+1, 5-max(m(j))).

subint: ipar(3)

Задаёт количество подынтервалов в исходной сетке. Если ipar(3) = 0, то bvode произвольным образом устанавливается subint = 5.

ntol: ipar(4)

Задаёт количество решений и допустимые отклонения производных. Требуется, чтобы 0 < ntol <= M. ipar(4) должно быть установлено равным размеру аргумента tol или равным 0. В последнем случае фактическое значение будет автоматически установлено равным size(tol,'*').

ndimf: ipar(5)

Задаёт размер fspace (вещественнозначный рабочий массив). Его значение указывает ограничение по максимальному количеству подынтервалов nmax.

Значение ipar(5) должно соответствовать ограничению ipar(5)>=nmax*nsizef, где nsizef=4 + 3*M + (5+collpnt*N)*(collpnt*N+M) + (2*M- nrec)*2*M (nrec - количество граничных условий с правой стороны).

ndimi: ipar(6)

Задаёт размер ispace (целочисленный рабочий массив). Это значение указывает ограничение по nmax, максимальному количеству подынтервалов.

Значение ipar(6) должно соответствовать ограничению ipar(6)>=nmax*nsizei, где nsizei= 3 + collpnt*N + M.

iprint: ipar(7)

контроль на выходе, может принимать следующие значения:

-1

для полной диагностической распечатки

0

для избранной распечатки

1

для отказа от распечатки

iread: ipar(8)
= 0

заставляет bvode генерировать равномерную исходную сетку.

= xx

другие значения в Scilab'е пока не реализованы

= 1

если исходная сетка указана пользователем, то она будет определена в fspace следующим образом: сетка будет занимать fspace(1), ..., fspace(n+1). Пользователю нужно предоставить только внутренние точки сетки fspace(j) = x(j), j = 2, ..., n.

= 2

если исходная сетка представлена пользователем как в случае ipar(8)=1, и, к тому же, никакого выбора адаптивной сетки не делается.

iguess: ipar(9)
= 0

если никакого первоначального предположения для решения не предоставлено.

= 1

если первоначальное предположение предоставлено пользователем с помощью аргумента guess.

= 2

если исходная сетка и коэффициенты приближённого решения предоставлены пользователем в fspace (прежняя и новая сетки одни и те же).

= 3

если прежняя сетка и коэффициенты приближённого решения предоставлены пользователем в fspace, а новая сетка взята в два раза реже, то есть каждая вторая точка из прежней сетки.

= 4

если в дополнение к прежней исходной сетке и коэффициента приближённого решения также предоставлена новая сетка в fspace (см. описание выходных данных для более подробной информации по iguess = 2, 3 и 4).

ireg: ipar(10)
= 0

если задача является регулярной

= 1

если первый коэффициент релаксации равен ireg, и нелинейная итерация не зависит от прошлой сходимости (использовать только для сверхчувствительных нелинейных задач) only).

= 2

если вы хотите возврата немедленно при (а) двух, следующих друг за другом, несходимостях, либо (б) после получения ошибочной оценки в первый раз.

nfxpnt: ipar(11)

указывает количество фиксированных точек в сетке, отличных от x_low и x_up (размерность fixpnt). ipar(11) должна быть установлена равной размерности аргумента fixpnt или равной 0. В последнем случае фактическое значение будет автоматически установлено равным size(fixpnt,'*').

ltol

массив размерности ntol=ipar(4). ltol(j) = l определяет, что j-тый допуск в массиве tol управляет ошибкой в l-том элементе . Также требуется, чтобы:

1 <= ltol(1) < ltol(2) < ... < ltol(ntol) <= M

tol

массив размерности ntol=ipar(4).

tol(j) допуск ошибки в ltol(j)-том элементе . Таким образом код пытается удовлетворить в каждом подынтервале, где

- вектор приближённого решения, а - точное решение (неизвестное).

fixpnt

массив размером nfxpnt=ipar(11). Он содержит точки отличные от x_low и x_up, которые нужно включить во все сетки. Код требует, чтобы все точки дополнительных условий, отличные от x_low и x_up (см. описание zeta ) были включены в качестве фиксированных точек в fixpnt.

fsub

Внешняя функция, используемая для вычисления вектор-столбца f= , для всех x таких, что x_low <= x <= x_up и для любых z=z(u(x)) (см. описание ниже).

Внешняя функция должна иметь заголовки:

  • В Fortran последовательность вызова должна быть:

    subroutine fsub(x,zu,f)
    double precision zu(*), f(*),x
  • В C прототип функции должен быть:

    void fsub(double *x, double *zu, double *f)
  • А в Scilab'е:

    function f=fsub(x, zu, parameters)
dfsub

Внешняя функция, используемая для вычисления якобиана от f(x,z(u)) в точке x, где z(u(x)) определена как для fsub, и массив df размером N на M должен быть заполнен частными производными от f:

Внешняя функция должна иметь заголовки:

  • В Fortran вызывающая последовательность должна быть:

    subroutine dfsub(x,zu,df)
    double precision zu(*), df(*),x
  • В C прототип функции должен быть:

    void dfsub(double *x, double *zu, double *df)
  • И в Scilab'е:

    function df=dfsub(x, zu, parameters)
gsub

Внешняя функция, используемая для вычисления задавая z= z = zeta(i) для 1<=i<=M.

Внешняя функция должна иметь заголовки:

  • В Fortran вызывающая последовательность должна быть:

    subroutine gsub(i,zu,g)
    double precision zu(*), g(*)
    integer i
  • В C прототип функции должен быть:

    void gsub(int *i, double *zu, double *g)
  • А в Scilab'е:

    function g=gsub(i, zu, parameters)

    Заметьте, что в отличие от f в fsub, здесь только одно значение за вызов возвращается в g.

dgsub

Внешняя функция, используемая для вычисления i-той строки якобиана от g(x,u(x)), где z(u) такая, как для fsub, i как для gsub а M-вектор dg должен быть заполнен частными производными от g, то есть, для отдельного вызова вычисляется

Внешняя функция должна иметь заголовки:

  • В Fortran вызывающая последовательность должна быть:

    subroutine dgsub(i,zu,dg)
    double precision zu(*), dg(*)
  • В C прототип функции должен быть:

    void dgsub(int *i, double *zu, double *dg)
  • А в Scilab'е:

    function dg=dgsub(i, zu, parameters)
guess

Внешняя функция, используемая для вычисления исходной аппроксимации для z(u(x)) и dmval(u(x)), вектора mj-тых производных от u(x). Заметьте, что эта процедура используется только если ipar(9) = 1, и тогда все M элементы zu и N элементы dmval должны быть вычислены для любого x такого, что x_low <= x <= x_up.

Внешняя функция должна иметь заголовки:

  • В Fortran вызывающая последовательность должна быть:

    subroutine guess(x,zu,dmval)
    double precision x,z(*), dmval(*)
  • В C прототип функции должне быть:

    void fsub(double *x, double *zu, double *dmval)
  • А в Scilab'е:

    function [dmval, zu]=fsub(x, parameters)
<optional_args>

Необязательные аргументы, должны быть либо:

  • любой левой частью упорядоченной последовательности значений: guess, dfsub, dgsub, fixpnt, ndimf, ndimi, ltol, tol, ntol,nonlin, collpnt, subint, iprint, ireg, ifail

  • либо любой последовательностью arg_name=argvalue с arg_name из: guess, dfsub, dgsub, fixpnt, ndimf, ndimi, ltol, tol, ntol, nonlin, collpnt, subint, iprint, ireg, ifail.

Все эти аргументы за исключением ifail описаны выше. ifail может использоваться для отображения вызова bvode в соответствии с выбранными необязательными аргументами. Если guess задано, то iguess равно 1.

Описание

Эти функции решают задачу многоточечных граничных значений для системы ОДУ смешанного порядка, заданной как:

где:

Аргумент zu, используемый внешними функциями и возвращаемый bvode, является вектор-столбцом, сформированным элементами z(u(x)) для заданных x.

Метод, используемый для аппроксимации решения, u является коллокацией в гауссовских точках, требующих m(i)-1 непрерывных производных в i-том элементе, i = 1:N. Здесь, k - количество точек коллокации (этапов) на подынтервале, и оно выбирается так, чтобы k ≥ max(m(i)). Используется представление решения одночленного решения Рунге-Кутты.

Примеры

Первые две задачи взяты из [1] раздела Литература.

Смотрите также

Используемые функции

Эта функция основана на процедуре Fortran colnew, разработанной

U. Ascher, Department of Computer Science, University of British Columbia, Vancouver, B.C. V6T 1W5, Canada

G. Bader, institut f. Angewandte mathematik university of Heidelberg; im Neuenheimer feld 294d-6900 Heidelberg 1

Литература

  1. U. Ascher, J. Christiansen and R.D. Russell, collocation software for boundary-value ODEs, acm trans. math software 7 (1981), 209-222. this paper contains EXAMPLES where use of the code is demonstrated.

  2. G. Bader and U. Ascher, a new basis implementation for a mixed order boundary value ode solver, siam j. scient. stat. comput. (1987).

  3. U. Ascher, J. Christiansen and R.D. Russell, a collocation solver for mixed order systems of boundary value problems, math. comp. 33 (1979), 659-679.

  4. U. Ascher, J. Christiansen and R.D. russell, colsys - a collocation code for boundary value problems, lecture notes comp.sc. 76, springer verlag, b. children et. al. (eds.) (1979), 164-185.

  5. C. Deboor and R. Weiss, solveblok: a package for solving almost block diagonal linear systems, acm trans. math. software 6 (1980), 80-87.


Report an issue
<< Дифференциальное счисление, интегрирование Дифференциальное счисление, интегрирование dae >>