
OpenFOAM
The OpenFOAM Foundation

User Guide
version 13

8th July 2025

https://openfoam.org

https://openfoam.org


U-2

Copyright © 2011-2025 OpenFOAM Foundation Ltd.
Author: Christopher J. Greenshields, CFD Direct Ltd.

This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported Li-
cense.

Typeset in LATEX.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CRE-
ATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PRO-
TECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW
IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

1. Definitions

a. “Adaptation” means a work based upon the Work, or upon the Work and other pre-
existing works, such as a translation, adaptation, derivative work, arrangement of music
or other alterations of a literary or artistic work, or phonogram or performance and
includes cinematographic adaptations or any other form in which the Work may be recast,
transformed, or adapted including in any form recognizably derived from the original,
except that a work that constitutes a Collection will not be considered an Adaptation for
the purpose of this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in timed-relation with
a moving image (“synching”) will be considered an Adaptation for the purpose of this
License.

b. “Collection” means a collection of literary or artistic works, such as encyclopedias and
anthologies, or performances, phonograms or broadcasts, or other works or subject mat-
ter other than works listed in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in which the Work is in-
cluded in its entirety in unmodified form along with one or more other contributions, each
constituting separate and independent works in themselves, which together are assembled
into a collective whole. A work that constitutes a Collection will not be considered an
Adaptation (as defined above) for the purposes of this License.

c. “Distribute” means to make available to the public the original and copies of the Work
through sale or other transfer of ownership.

d. “Licensor” means the individual, individuals, entity or entities that offer(s) the Work
under the terms of this License.

e. “Original Author” means, in the case of a literary or artistic work, the individual, individ-
uals, entity or entities who created the Work or if no individual or entity can be identified,
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the publisher; and in addition (i) in the case of a performance the actors, singers, mu-
sicians, dancers, and other persons who act, sing, deliver, declaim, play in, interpret or
otherwise perform literary or artistic works or expressions of folklore; (ii) in the case of
a phonogram the producer being the person or legal entity who first fixes the sounds of
a performance or other sounds; and, (iii) in the case of broadcasts, the organization that
transmits the broadcast.

f. “Work” means the literary and/or artistic work offered under the terms of this License
including without limitation any production in the literary, scientific and artistic domain,
whatever may be the mode or form of its expression including digital form, such as a
book, pamphlet and other writing; a lecture, address, sermon or other work of the same
nature; a dramatic or dramatico-musical work; a choreographic work or entertainment in
dumb show; a musical composition with or without words; a cinematographic work to
which are assimilated works expressed by a process analogous to cinematography; a work
of drawing, painting, architecture, sculpture, engraving or lithography; a photographic
work to which are assimilated works expressed by a process analogous to photography; a
work of applied art; an illustration, map, plan, sketch or three-dimensional work relative to
geography, topography, architecture or science; a performance; a broadcast; a phonogram;
a compilation of data to the extent it is protected as a copyrightable work; or a work
performed by a variety or circus performer to the extent it is not otherwise considered a
literary or artistic work.

g. “You” means an individual or entity exercising rights under this License who has not
previously violated the terms of this License with respect to the Work, or who has re-
ceived express permission from the Licensor to exercise rights under this License despite
a previous violation.

h. “Publicly Perform” means to perform public recitations of the Work and to communicate
to the public those public recitations, by any means or process, including by wire or
wireless means or public digital performances; to make available to the public Works in
such a way that members of the public may access these Works from a place and at a place
individually chosen by them; to perform the Work to the public by any means or process
and the communication to the public of the performances of the Work, including by public
digital performance; to broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. “Reproduce” means to make copies of the Work by any means including without limitation
by sound or visual recordings and the right of fixation and reproducing fixations of the
Work, including storage of a protected performance or phonogram in digital form or other
electronic medium.

2. Fair Dealing Rights.
Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright
or rights arising from limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant.
Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to
Reproduce the Work as incorporated in the Collections;
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b. and, to Distribute and Publicly Perform the Work including as incorporated in Collections.

The above rights may be exercised in all media and formats whether now known or hereafter
devised. The above rights include the right to make such modifications as are technically neces-
sary to exercise the rights in other media and formats, but otherwise you have no rights to make
Adaptations. Subject to 8(f), all rights not expressly granted by Licensor are hereby reserved,
including but not limited to the rights set forth in Section 4(d).

4. Restrictions.

The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License.
You must include a copy of, or the Uniform Resource Identifier (URI) for, this License
with every copy of the Work You Distribute or Publicly Perform. You may not offer or
impose any terms on the Work that restrict the terms of this License or the ability of the
recipient of the Work to exercise the rights granted to that recipient under the terms of
the License. You may not sublicense the Work. You must keep intact all notices that
refer to this License and to the disclaimer of warranties with every copy of the Work
You Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work,
You may not impose any effective technological measures on the Work that restrict the
ability of a recipient of the Work from You to exercise the rights granted to that recipient
under the terms of the License. This Section 4(a) applies to the Work as incorporated
in a Collection, but this does not require the Collection apart from the Work itself to be
made subject to the terms of this License. If You create a Collection, upon notice from
any Licensor You must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner
that is primarily intended for or directed toward commercial advantage or private mon-
etary compensation. The exchange of the Work for other copyrighted works by means
of digital file-sharing or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided there is no
payment of any monetary compensation in connection with the exchange of copyrighted
works.

c. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request
has been made pursuant to Section 4(a), keep intact all copyright notices for the Work and
provide, reasonable to the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or
Licensor designate another party or parties (e.g., a sponsor institute, publishing entity,
journal) for attribution (“Attribution Parties”) in Licensor’s copyright notice, terms of
service or by other reasonable means, the name of such party or parties; (ii) the title
of the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that
Licensor specifies to be associated with the Work, unless such URI does not refer to the
copyright notice or licensing information for the Work. The credit required by this Section
4(c) may be implemented in any reasonable manner; provided, however, that in the case
of a Collection, at a minimum such credit will appear, if a credit for all contributing
authors of Collection appears, then as part of these credits and in a manner at least as
prominent as the credits for the other contributing authors. For the avoidance of doubt,
You may only use the credit required by this Section for the purpose of attribution in
the manner set out above and, by exercising Your rights under this License, You may not
implicitly or explicitly assert or imply any connection with, sponsorship or endorsement by
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the Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written permission of the Original
Author, Licensor and/or Attribution Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which
the right to collect royalties through any statutory or compulsory licensing scheme
cannot be waived, the Licensor reserves the exclusive right to collect such royalties
for any exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme can
be waived, the Licensor reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License if Your exercise of such
rights is for a purpose or use which is otherwise than noncommercial as permitted
under Section 4(b) and otherwise waives the right to collect royalties through any
statutory or compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any ex-
ercise by You of the rights granted under this License that is for a purpose or use
which is otherwise than noncommercial as permitted under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted
by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by
itself or as part of any Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial to the Original
Author’s honor or reputation.

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICEN-
SOR OFFERS THEWORKAS-IS ANDMAKES NO REPRESENTATIONS ORWARRANTIES
OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTH-
ERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHAN-
TIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE
ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS
DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION
MAY NOT APPLY TO YOU.

6. Limitation on Liability.
EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCI-
DENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT
OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination
a. This License and the rights granted hereunder will terminate automatically upon any

breach by You of the terms of this License. Individuals or entities who have received
Collections from You under this License, however, will not have their licenses terminated
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provided such individuals or entities remain in full compliance with those licenses. Sections
1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the
duration of the applicable copyright in the Work). Notwithstanding the above, Licensor
reserves the right to release the Work under different license terms or to stop distributing
the Work at any time; provided, however that any such election will not serve to withdraw
this License (or any other license that has been, or is required to be, granted under
the terms of this License), and this License will continue in full force and effect unless
terminated as stated above.

8. Miscellaneous
a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor

offers to the recipient a license to the Work on the same terms and conditions as the
license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this License, and
without further action by the parties to this agreement, such provision shall be reformed
to the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to
unless such waiver or consent shall be in writing and signed by the party to be charged
with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the
Work licensed here. There are no understandings, agreements or representations with
respect to the Work not specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You.

e. This License may not be modified without the mutual written agreement of the Licensor
and You. The rights granted under, and the subject matter referenced, in this License were
drafted utilizing the terminology of the Berne Convention for the Protection of Literary
and Artistic Works (as amended on September 28, 1979), the Rome Convention of 1961,
the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of
1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights
and subject matter take effect in the relevant jurisdiction in which the License terms are
sought to be enforced according to the corresponding provisions of the implementation
of those treaty provisions in the applicable national law. If the standard suite of rights
granted under applicable copyright law includes additional rights not granted under this
License, such additional rights are deemed to be included in the License; this License is
not intended to restrict the license of any rights under applicable law.
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Trademarks

ANSYS is a registered trademark of ANSYS Inc.
CFX is a registered trademark of Ansys Inc.
CHEMKIN is a registered trademark of Reaction Design Corporation.
EnSight is a registered trademark of Computational Engineering International Ltd.
Fieldview is a registered trademark of Intelligent Light.
Fluent is a registered trademark of Ansys Inc.
GAMBIT is a registered trademark of Ansys Inc.
Icem-CFD is a registered trademark of Ansys Inc.
I-DEAS is a registered trademark of Structural Dynamics Research Corporation.
Linux is a registered trademark of Linus Torvalds.
OpenFOAM is a registered trademark of ESI Group.
ParaView is a registered trademark of Kitware.
STAR-CD is a registered trademark of CD-Adapco.
UNIX is a registered trademark of The Open Group.
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Chapter 1

Introduction

This guide accompanies the release of version 13 of the Open Source Field Operation
and Manipulation (OpenFOAM) C++ libraries. It provides a description of the basic
operation of OpenFOAM, first through a set of tutorial exercises in chapter 2 and later
by more detailed descriptions of different components of OpenFOAM.

OpenFOAM is software for computational fluid dynamics (CFD). It includes a collec-
tion of applications which perform a range of tasks in CFD. The applications use packaged
functionality contained within over 150 libraries. As well as performing calculations of
the fluid dynamics, there are applications which configure and initialise simulations, ma-
nipulate case geometry, generate computational meshes, and process and visualise results.

Applications primarily fall into two categories: solvers, which perform the calcula-
tions in fluid (or other continuum) mechanics; and utilities, that perform the other tasks
described above. Prior to version 11 of OpenFOAM, individual solvers were written for
numerous specific types of flow. With so many combinations of flow type and additional
physics, OpenFOAM included almost 100 solvers at one time. Solvers with names like
simpleFoam and pimpleFoam have been the mainstay of OpenFOAM since the early 1990s.

The previous version (11) of OpenFOAM, however, introduced modular solvers as
a major improvement to the original application solvers. The application solvers are
replaced by a single foamRun solver which describes the steps of a general algorithm for
fluid dynamics calculations. foamRun loads a solver module, which defines each step to
characterise a particular type of flow.

Modular solvers are simpler to use and maintain than application solvers. Their source
code is easier to navigate, promoting better understanding. They are more flexible; in
particular, there is also a foamMultiRun solver which can take two or more domain regions
and apply a different solver module to each region. In particular, modules for one or more
fluids and solids can be coupled for conjugate heat transfer (CHT) for different flow types,
e.g. multiphase.

Further details of applications, including modular solvers, are described in chapter 3.
General configuration and running of OpenFOAM cases are described in chapter 4. Chap-
ter 5 covers details of the generation of meshes using the mesh generator supplied with
OpenFOAM and conversion of mesh data generated by third-party products. Post-
processing of results, including visualisation, is in chapter 7. Finally, some aspects of
physical modelling, e.g. transport and thermophysical modelling, are described in chap-
ter 8.
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Chapter 2

Tutorials

This chapter we describes the process of setup, simulation and post-processing for some
OpenFOAM test cases, with the principal aim of introducing a user to the basic proce-
dures of running OpenFOAM. The test cases are taken from the tutorials directory which
contains numerous example cases in OpenFOAM. The directory location is represented
by the $FOAM_TUTORIALS variable in the OpenFOAM “environment”.

The directory contains numerous cases that demonstrate the use of all the solver
modules, other solvers and many utilities supplied with OpenFOAM. Most examples are
stored in sub-directories corresponding to each of the modular solvers. For example, the
cases that use the incompressibleFluid module are stored in $FOAM_TUTORIALS/incom-
pressibleFluid. The user can explore these example cases, starting by listing the top-level
of the $FOAM_TUTORIALS directory, by typing in a terminal

ls $FOAM_TUTORIALS

The OpenFOAM environment includes a $FOAM_RUN variable which represents a di-
rectory in the user’s file system at $HOME/OpenFOAM/<USER>-13/run where <USER>
is the account login name and “13” is the OpenFOAM version number. The directory
provides a recommended location to store and run simulation cases. The examples pre-
sented in this chapter will be copied into the run directory. The user should check whether
the directory exists by typing

ls $FOAM_RUN

If a message is returned saying no such directory exists, the user should create the directory
by typing

mkdir -p $FOAM_RUN

Any example case from $FOAM_TUTORIALS can then be copied into the run directory.
For example to try the motorBike example for the incompressibleFluid solver module, the
user can copy it to the run directory by typing:

cd $FOAM_RUN
cp -r $FOAM_TUTORIALS/incompressibleFluid/motorBike .
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2.1 Backward-facing step
This tutorial will describe how to pre-process, run and post-process a case involving
isothermal, incompressible flow across a backward-facing step. The problem is treated as
two dimensional with the geometry shown in Figure 2.1. The domain consists of:

• an inlet opening (left);

• an outlet opening (right);

• an upper wall, which is horizontal before tapering gently toward the outlet;

• a lower wall, which also tapers towards the outlet, but includes an abrupt step
within a short distance from the inlet;

25.4

25.4
33.2

20.6 206 84
dimensions in mm

inlet outletupper wall

lower wall

x
y

Figure 2.1: Geometry of the backward-facing step.

Flow enters the inlet in the x-direction with a speed of 10 m/s. The flow will be
assumed isothermal and incompressible and will be solved using the incompressibleFluid
modular solver.

2.1.1 Pre-processing
Cases are configured in OpenFOAM by editing input data files. Users should select a
suitable file editor to do this, e.g. emacs, vi, gedit, nedit, etc. A case involves multiple data
files, corresponding to different parts of the configuration, e.g. mesh, fields, properties,
control parameters, etc. As described in section 4.1, the set of files is stored within a
case directory, which is given a suitably descriptive name. This tutorial uses the case
$FOAM_TUTORIALS/incompressibleFluid/pitzDailySteady, which the user should copy to
their run directory as follows.

cd $FOAM_RUN
cp -r $FOAM_TUTORIALS/incompressibleFluid/pitzDailySteady .
cd pitzDailySteady

2.1.2 Mesh generation
OpenFOAM always operates in a three dimensional Cartesian coordinate system and all
geometries are generated in three dimensions (3D). It solves the case in two dimensions
(2D) by specifying a special empty boundary condition on boundaries normal to the (3rd)
dimension (for which no solution is required).
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Figure 2.2: Block structure of the mesh for the backward step.

OpenFOAM includes a simple mesh generator, blockMesh, which generates meshes
from a blockMeshDict file, located in the system directory for a given case. The domain is
defined using blocks whose vertex locations are specified in the file. The structure of the
blocks and respective vertices are shown in Figure 2.2.

The backwardStep domain consists of five blocks shown in the figure. The domain
depth in the z direction (exaggerated in the figure) is 1 mm. The blockMeshDict file for
this example is reproduced below:

1 /*--------------------------------*- C++ -*----------------------------------*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration | Website: https://openfoam.org
5 \\ / A nd | Version: 13
6 \\/ M anipulation |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10 format ascii;
11 class dictionary;
12 object blockMeshDict;
13 }
14 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
15
16 // Note: this file is a Copy of $FOAM_TUTORIALS/resources/blockMesh/pitzDaily
17
18 convertToMeters 0.001;
19
20 vertices
21 (
22 (-20.6 0 -0.5)
23 (-20.6 25.4 -0.5)
24 (0 -25.4 -0.5)
25 (0 0 -0.5)
26 (0 25.4 -0.5)
27 (206 -25.4 -0.5)
28 (206 0 -0.5)
29 (206 25.4 -0.5)
30 (290 -16.6 -0.5)
31 (290 0 -0.5)
32 (290 16.6 -0.5)
33
34 (-20.6 0 0.5)
35 (-20.6 25.4 0.5)
36 (0 -25.4 0.5)
37 (0 0 0.5)
38 (0 25.4 0.5)
39 (206 -25.4 0.5)
40 (206 0 0.5)
41 (206 25.4 0.5)
42 (290 -16.6 0.5)
43 (290 0 0.5)
44 (290 16.6 0.5)
45 );
46
47 negY
48 (
49 (2 4 1)
50 (1 3 0.3)
51 );
52
53 posY
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54 (
55 (1 4 2)
56 (2 3 4)
57 (2 4 0.25)
58 );
59
60 posYR
61 (
62 (2 1 1)
63 (1 1 0.25)
64 );
65
66
67 blocks
68 (
69 hex (0 3 4 1 11 14 15 12)
70 (18 30 1)
71 simpleGrading (0.5 $posY 1)
72
73 hex (2 5 6 3 13 16 17 14)
74 (180 27 1)
75 edgeGrading (4 4 4 4 $negY 1 1 $negY 1 1 1 1)
76
77 hex (3 6 7 4 14 17 18 15)
78 (180 30 1)
79 edgeGrading (4 4 4 4 $posY $posYR $posYR $posY 1 1 1 1)
80
81 hex (5 8 9 6 16 19 20 17)
82 (25 27 1)
83 simpleGrading (2.5 1 1)
84
85 hex (6 9 10 7 17 20 21 18)
86 (25 30 1)
87 simpleGrading (2.5 $posYR 1)
88 );
89
90 boundary
91 (
92 inlet
93 {
94 type patch;
95 faces
96 (
97 (0 1 12 11)
98 );
99 }

100 outlet
101 {
102 type patch;
103 faces
104 (
105 (8 9 20 19)
106 (9 10 21 20)
107 );
108 }
109 upperWall
110 {
111 type wall;
112 faces
113 (
114 (1 4 15 12)
115 (4 7 18 15)
116 (7 10 21 18)
117 );
118 }
119 lowerWall
120 {
121 type wall;
122 faces
123 (
124 (0 3 14 11)
125 (3 2 13 14)
126 (2 5 16 13)
127 (5 8 19 16)
128 );
129 }
130 frontAndBack
131 {
132 type empty;
133 faces
134 (
135 (0 3 4 1)
136 (2 5 6 3)
137 (3 6 7 4)
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138 (5 8 9 6)
139 (6 9 10 7)
140 (11 14 15 12)
141 (13 16 17 14)
142 (14 17 18 15)
143 (16 19 20 17)
144 (17 20 21 18)
145 );
146 }
147 );
148
149 // ************************************************************************* //

The file first contains header information in the form of a banner (lines 1-7), then file
information contained in a FoamFile sub-dictionary, delimited by curly braces ({...}).

For the remainder of the manual:

To save space, file headers, including the banner and FoamFile sub-dictionary,
will be removed from further verbatim quoting of case files.

The body of the blockMeshDict file will be briefly reviewed here, but for further details
see section 5.4. The file begins with the coordinates of the block vertices. All vertices
are scaled by the factor specified by convertToMeters. The file then defines the blocks
(here, 5 of them). Each block is a hexahedral shape, given by the hex entry. The eight
vertex labels are listed following the hex entry.

The number of cells is specified in each direction for each block by a vector of three
integers. For example the first block specifies (18 30 1), which produces 18 cells through
the block in the x-direction, 30 in the x-direction and 1 in the z-direction (the unused
direction).

The blocks includes mesh grading, which enables the cell lengths to vary across the
block. It is includes multi-grading which is described in section 5.4.5 using parameters
negY, posY and posYR.

Finally, the mesh splits the boundary into inlet, outlet and wall regions, included in
the following patches: upperWall and lowerWall for the wall boundaries of the domain;
inlet and outlet for the open boundaries. The boundary in the z-normal direction is
included in a single patch named frontAndBack.

The mesh is generated by running blockMesh on this blockMeshDict file. From within
the case directory, this is done, simply by typing in the terminal:

blockMesh

The running status of blockMesh is reported in the terminal window. Any mistakes in the
blockMeshDict file are picked up by blockMesh and the resulting error message directs the
user to the source of the error.

2.1.3 Viewing the mesh
It is sensible to verify the mesh is generated correctly before running the simulation. The
mesh can be viewed in ParaView, the post-processing tool supplied with OpenFOAM. The
ParaView post-processing is conveniently launched on OpenFOAM case data by executing
the paraFoam script from within the case directory.

Any UNIX/Linux executable (application, script, etc.) can be run in two ways: as a
foreground process, i.e. one in which the shell waits until the executable has finished
before returning the command prompt; or, as a background process, which allows the
shell to accept additional commands while the executable is still running. Since it is
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Select WireframeSelect Solid ColorSelect Color

Figure 2.3: Viewing the mesh in ParaView (cell density reduced).

convenient to keep ParaView open while running other commands from the terminal, we
will launch it in the background using the & operator by typing

paraFoam &

This launches the ParaView window as shown in Figure 7.1. In the Pipeline Browser,
ParaView registers pitzDailySteady.OpenFOAM, representing the pitzDailySteady case.

For the remainder of the manual:

The first time ParaView is launched, users are faced with a splash screen which
can be permanently deactivated by clicking the relevant checkbox before closing.

Before clicking the Apply button, the user can select some geometry from the Mesh
Parts panel in the Properties window (may require scrolling to find). Because the case is
small, it is easiest to select all the data by checking the box adjacent to the Mesh Parts
panel title, which automatically checks all individual components within the respective
panel. The user should then click the Apply button to load the geometry into ParaView.

The user can control the visual representation of the selected module either using the
second row of controls at the top of ParaView or by scrolling down further to the Display
panel that. The user should make the selections using the second row of controls as shown
in Figure 2.3, or as described below from within the Display panel.

1. select Wireframe from the Representation menu;

2. in the Coloring section, select Solid Color;

3. click Edit (in Coloring) and select an appropriate colour e.g. black (for a white
background).

Especially the first time the user starts ParaView, it is recommended that they ma-
nipulate the view as described in section 7.1.5. In particular, since this is a 2D case, it
is recommended that Camera Parallel Projection is selected at the bottom of the View
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(Render View) panel. The selection can be saved as a user default by clicking the
Save current view settings button to the right of the View (Render View) heading (the
furthest right of the four buttons). The background colour can be also set in the View
(Render View) panel at the bottom of the Properties window.

Note that, many parameters in the Properties window are only visible by
clicking the Advanced Properties gearwheel button ( ) at the top of the Properties
window, next to the search box.

2.1.4 Boundary and initial conditions
Once the mesh generation is complete, the user can look at the configuration of the initial
fields for this case. The case starts at time t = 0 s, so the initial field data is stored in a 0
sub-directory of the cavity directory. The 0 sub-directory contains several files including
p and U, which represent the pressure (p) and velocity (U) fields, respectively. Within
these files the initial values and boundary conditions must be set. Let us examine the p
file below.

16 dimensions [0 2 -2 0 0 0 0];
17
18 internalField uniform 0;
19
20 boundaryField
21 {
22 inlet
23 {
24 type zeroGradient;
25 }
26
27 outlet
28 {
29 type fixedValue;
30 value uniform 0;
31 }
32
33 upperWall
34 {
35 type zeroGradient;
36 }
37
38 lowerWall
39 {
40 type zeroGradient;
41 }
42
43 frontAndBack
44 {
45 type empty;
46 }
47 }
48
49 // ************************************************************************* //

There are three principal entries in field data files:

dimensions specifies the dimensions of the field, here kinematic pressure, i.e. m2 s−2 (see
section 4.2.6 for more information);

internalField the internal field data which can be uniform, described by a single value;
or nonuniform, where the values of the field must be specified for all cells (see
section 4.2.9 for more information);

boundaryField the boundary field data that includes boundary conditions and data for
all the boundary patches (see section 4.2.9 for more information).
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For this pitzDailySteady case, the initial fields are set to be uniform. Here the pressure
is kinematic, and since the solution does not involve energy and thermodynamics, its
absolute value is not relevant, so is set to uniform 0 for convenience.

The boundary includes the upperWall, lowerWall, inlet and outlet patches. The
walls and inlet are both assigned the zeroGradient boundary condition for p, meaning “the
normal gradient of pressure is zero”. The outlet uses the fixedValue boundary condition
for p with value of uniform 0. The frontAndBack patch, describing the front and back
planes of the 2D case, is specified as empty.

The user can similarly examine the velocity field in the 0/U file. The dimensions are
those expected for velocity, the internal field is initialised as uniform zero, which in the
case of velocity must be expressed by 3 vector components, i.e. uniform (0 0 0) (see
section 4.2.5 for more information).

A no-slip condition is assumed on the walls, specified by a noSlip condition. The
inlet flow speed is 10 m/s in the x-direction so represented by a fixedValue condition
with value of uniform (10 0 0). The outlet reverts to the zeroGradient condition. The
frontAndBack patch must be set to empty.

2.1.5 Physical properties
Physical properties and model configurations for the case are stored in dictionary files in
the constant directory. Properties for this example are specified in the following physical-
Properties file.

16
17 viscosityModel constant;
18
19 nu 1e-05;
20
21 // ************************************************************************* //

First it includes the viscosityModel entry which is set to constant. With that model,
a single kinematic viscosity is then specified by the keyword nu, representing the Greek
symbol ν phonetically for the kinematic viscosity. The value is set to ν = 1×10−5 m2 s−1.

2.1.6 Momentum transport
An estimate of the Reynolds number is required to determine whether the flow is expected
to be turbulent. The Reynolds number is defined as:

Re = |U|L
ν

(2.1)

where |U| and L are the characteristic speed and length respectively and ν is the kinematic
viscosity. Using the inlet (or step) height L = 25.4 mm and |U| = 10 m/s, Re = 25400.
For flow in a pipe, transition typically occurs when Re ≈> 2000, so this case can be
assumed to be turbulent.

The momentumTransport file characterises the viscous stress in the fluid by a variety of
models, e.g. Newtonian and non-Newtonian fluids, turbulence, visco-elasticity and more.
For this example, the file includes the configuration of turbulence modelling as shown
below.

16
17 simulationType RAS;
18
19 RAS
20 {
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21 // Tested with kEpsilon, realizableKE, kOmega, kOmega2006, kOmegaSST, v2f,
22 // ShihQuadraticKE, LienCubicKE.
23 model kEpsilon;
24
25 turbulence on;
26
27
28 viscosityModel Newtonian;
29 }
30
31
32 // ************************************************************************* //

The type of simulation is first specified by the simulationType keyword. The RAS entry
indicates a Reynolds-averaged simulation, the standard form of turbulence modelling. The
RAS sub-dictionary includes the model entry which is set to the well-known k–ε model by
the kEpsilon entry. The turbulence keyword provides a switch to turn the modelling
on and off. The model coefficients have default values which can be overridden with
additional entries in the momentumTransport file. When the printCoeffs switch in on,
the coefficients are printed to the terminal when the case is run. The viscosityModel
entry confirms the fluid is modelled as Newtonian (which is the default model, so the
entry could be omitted).

The k–ε model solves transport equations for: k, the turbulent kinetic energy; and,
ε, the turbulent dissipation rate. The initial and boundary conditions for those fields are
configured in the 0/k and 0/epsilon files, respectively.

In particular, the turbulent fields must be initialised with suitable internal and inlet
values. Turbulent kinetic energy k can be calculated by

k = 3
2 (|U|I)2 (2.2)

from an estimate of turbulent intensity I = U′
RMS/|U|, the ratio of the root-mean-square

(RMS) of turbulent fluctuations U′
RMS to the mean flow speed |U|. This example uses an

estimate I = 5%, such that k = 1.5× (10× 0.05)2 = 0.375 m2 s−2. In the 0/k file, 0.375
is used both for the initial internalField and the inlet value.

The turbulent dissipation rate ε can be calculated by

ε = C0.75
µ

k1.5

lm
. (2.3)

from Cµ = 0.09 and an estimate of Prandtl mixing length lm. This example uses an
estimate lm = 10% × step height = 2.54 mm, such that ε = 0.090.75× 0.3751.5/0.00254 =
14.855 m2s−3. In the 0/epsilon file, 14.855 is used both for the initial internalField and
the inlet value.

The turbulence model is deployed with wall functions to model the behaviour at
wall boundaries. Wall functions are applied as boundary conditions on the individual
wall patches which enables different wall function models to be applied to different wall
regions. The choice of wall function models are specified through the turbulent viscosity
field, νt in the 0/nut file.

16
17 dimensions [0 2 -1 0 0 0 0];
18
19 internalField uniform 0;
20
21 boundaryField
22 {
23 inlet
24 {
25 type calculated;

OpenFOAM-13



U-26 Tutorials

26 value uniform 0;
27 }
28 outlet
29 {
30 type calculated;
31 value uniform 0;
32 }
33 upperWall
34 {
35 type nutkWallFunction;
36 value uniform 0;
37 }
38 lowerWall
39 {
40 type nutkWallFunction;
41 value uniform 0;
42 }
43 frontAndBack
44 {
45 type empty;
46 }
47 }
48
49
50 // ************************************************************************* //

This case uses standard wall functions, specified by the nutkWallFunction type on the
upperWall and lowerWall patches. Alternative wall function models include the rough
wall functions, specified through the nutRoughWallFunction keyword.

When wall functions are specified through boundary conditions in the 0/nut file, cor-
responding conditions must be applied to the wall patches for the turbulence fields. The
0/eps and 0/k files show that ε is assigned the epsilonWallFunction condition and k is as-
signed the kqRWallFunction condition at the wall patches. The latter is a generic boundary
condition that can be applied to any field that are of a turbulent kinetic energy type, e.g.
k, q or Reynolds Stress R.

2.1.7 Control
Input data relating to the control of time and reading and writing of the solution data
are read in from the controlDict file. The user should view this file; as a case control file,
it is located in the system directory.

16
17 solver incompressibleFluid;
18
19 startFrom startTime;
20
21 startTime 0;
22
23 stopAt endTime;
24
25 endTime 2000;
26
27 deltaT 1;
28
29 writeControl timeStep;
30
31 writeInterval 100;
32
33 purgeWrite 0;
34
35 writeFormat ascii;
36
37 writePrecision 6;
38
39 writeCompression off;
40
41 timeFormat general;
42
43 timePrecision 6;
44
45 runTimeModifiable true;
46
47 // ************************************************************************* //
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The file first includes a solver entry which describes the solver module used for the
simulation. This example uses the incompressibleFluid module for steady or transient
turbulent flow of incompressible isothermal fluids with optional mesh motion and change.

The start/stop times and the time step for the run must be set. OpenFOAM provides
flexible options for time controls which are described in section 4.4. Like most cases, this
example starts the simulation at time t = 0 which instructs the solver to read its field
data from a directory named 0. Therefore we set the startFrom keyword to startTime
and then specify the startTime keyword to be 0.

The aim of the simulation is to reach the steady solution where the recirculation
region is fully developed adjacent to the step. The incompressibleFluid module can run as
a steady-state solver by setting the time derivatives ∂/∂t to zero in all the equations. This
is achieved by setting the ddtSchemes to steadyState in the fvSchemes file, discussed
later.

In this mode, the time step, represented by the keyword deltaT, is only used as a
time increment (since it is no longer used to discretise ∂/∂t). Its value does not affect the
solution, so for steady solutions it is set to 1 so that time simply represents the number
of solution steps.

The endTime keyword sets a time at which the solver application stops running. The
value of 2000 provides an adequate number of solution steps to enable the steady solution
to converge to a reasonable level of accuracy.

As the simulation progresses we wish to write results at intervals of time of interest
for visualisation and other post-processing. The writeControl keyword presents several
options for setting the time at which the results are written; here the timeStep option
specifies that results are written every nth time step where the value n is specified under
the writeInterval keyword. The interval of 100 means results are written at 100, 200,
etc.

OpenFOAM creates a new directory named after the current time, e.g. 100, on each
occasion that it writes a set of data, as discussed in full in section 4.1. It writes out the
results for each solution field, e.g. U, p, k, into the time directories.

2.1.8 Discretisation and linear-solver settings
The user specifies the choice of finite volume discretisation schemes in the fvSchemes file
in the system directory. The specification of the linear equation solvers and tolerances
and other algorithm controls is made in the fvSolution file, also in the system directory.

The details of those two files are described in sections 4.5 and 4.6, respectively. For
this example, the following points are important:

• the ddtSchemes defaults to steadyState in fvSchemes, to invoke a steady-state
calculation;

• steady-state solution uses an algorithm based on SIMPLE whose controls are con-
figured in a SIMPLE sub-dictionary in the fvSolution file;

• the SIMPLE sub-dictionary contains the consistent switch which is set to yes,
applying the “consistent” form of the SIMPLE algorithm (SIMPLEC);

• the convergence of SIMPLEC is very sensitive to the relaxationFactors in the
fvSolution file; the values of 0.9 are carefully tuned and are not suitable for the
standard SIMPLE algorithm;
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• SIMPLEC’s sensitive convergence generally makes it only reliable for cases with
simple geometries.

2.1.9 Running an application
To run a simulation with a single domain region, the foamRun application is run. It loads
the relevant solver module, from the solver entry in the controlDict file, to perform the
calculation. On this occasion, we will run foamRun in the terminal foreground by typing
the following from within the case directory.

foamRun

The progress of the simulation is reported in the terminal window. It describes suc-
cessive solutions steps, giving the initial and final residuals for each equation, and con-
servation errors.

The SIMPLE algorithm controls in fvSolution include a residualControl sub-dictionary
with a set of tolerances for p, U and turbulence fields. The incompressibleFluid solver ter-
minates When the initial residuals for all fields fall below their respective tolerances. In
this example, the solver terminates at 285 iterations with the following statement.

SIMPLE solution converged in 285 iterations

Results from the simulation are written into time directories within the pitzDailySteady
case directory. The user can list the directory contents with the “ls” command to see
the time directories (100, 200 and 285) containing the results.

2.1.10 Time selection in ParaView
Once the results are written to time directories, they can be viewed using ParaView. The
first step is to activate the time selector, including the Time text box on right hand side
of the top row of buttons, as shown in Figure 7.4.

If ParaView is opened before there are any solution time directories (i.e. only a 0
directory), the time selector must later be re-activated to recognise the solution time
directories by:

• selecting the top of the Properties window (scroll up the panel if necessary) in
ParaView;

• toggling the Cache Mesh button at the top of the panel (under the Refresh Times
button;

• clicking the Apply button.
The time selector is then updated with Time becoming a drop down menu with the time
directories from the case (0, 100, 200 and 285). In order to view the solution at 285, the
user can use the VCR Controls or Current Time Controls to change the current time
to 285.

For the remainder of the manual:

In ParaView, if the window panels, e.g. Properties, do not contain the expected
entries, ensure that the relevant module is highlighted in blue in the Pipeline
Browser. For example, Refresh Times only appears when the top module (here,
pitzDailySteady.OpenFOAM) is selected.
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Select SurfaceSelect p (interp.)Select Rescale

Figure 2.4: Displaying pressure contours for the backward step case.

2.1.11 Colouring surfaces
To view pressure, the user can either make selections from the second row of buttons
at the top of ParaView as shown in Figure 2.4 or scroll down to the Display panel in
Properties and make the following selections:

1. select Surface from the Representation menu;

2. select in Coloring

3. click the Rescale button to set the colour scale to the data range, if necessary.

The pressure field should appear as shown above, with the pressure increasing to a maxi-
mum at the contraction of the channel towards the outlet. With the point icon ( ), the
pressure field is interpolated across each cell to give a continuous appearance. Instead if
the user selects the cell icon, ( ), from the Coloring menu, a single value for pressure
will be attributed to each cell, represented by a single colour with no grading.

A colour legend is included which can be disabled by clicking the Toggle Color Legend
Visibility button at the left of the second row of buttons at the top of ParaView. These
buttons are part of the Active Variable Controls toolbar, shown in Figure 7.4). The
Edit Color Map button, second on the left in Active Variable Controls toolbar, opens
the Color Map Editor window, as shown in Figure 2.5, where the user can set a range of
attributes of the colour scale and the color bar.

In particular, ParaView defaults to using a colour scale of blue to white to red rather
than the more common blue to green to red (rainbow). Therefore the first time that the
user executes ParaView, they may wish to change the colour scale. This can be done by
selecting the Choose Preset button, with the heart icon, in the Color Scale Editor. The
conventional color scale for CFD is Blue to Red Rainbow which is only listed if the user
types the name in the Search bar or selects the Rainbow category from the drop-down
menu next to the Search bar.

Images in this manual are created using the Blue to Red Rainbow colour scale. Rainbow
Uniform is a good alternative colour scale which has the advantage of a more uniform
distribution of colours. The user can choose either, but if using Rainbow Uniform, screen
images will appear slightly different to those in this manual.
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Save as Default

Choose preset
Configure Color Bar

Figure 2.5: Color Map Editor.

After selecting a rainbow colour scale, click Apply and Close, the user can click the
Save as Default button at the absolute bottom of the panel (file save symbol) so that
ParaView will always adopt this type of colour bar.

The user can also edit the color legend properties, such as text size, font selection and
numbering format for the scale, by clicking the Edit Color Legend Properties to the far
right of the search bar, as shown in Figure 2.5.

2.1.12 Cutting plane (slice)
If the user rotates the image, by holding down the left mouse button in the image window
and moving the cursor, they can see that they have now coloured the complete geometry
surface by the pressure. In order to produce a 2D contour plot the user should first create
a cutting plane, or ‘slice’. With the pitzDailySteady.OpenFOAM module highlighted in
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the Pipeline Browser, the user should select the Slice filter from the Filters menu in the
top menu of ParaView (accessible at the top of the screen on some systems). The Slice
filter can be found in the Common sub-menu or among the Common and Data Analysis
buttons, the third row of buttons at the top of ParaView (see Figure 7.4).

Selecting the Slice filter creates a new item in the Pipeline Browser. In the Properties
window, the cutting plane should have an origin at a point on the z-axis, e.g. (0, 0, 0) and
its normal should be set to (0, 0, 1) (click the Z Normal button).

When Apply is clicked, the slice appears in the RenderView window, while the original
pitzDailySteady.OpenFOAM module disappears. The visibility of each module is enabled
and disabled by the eye button to the left of each module in the pipeline browser.

For the remainder of the manual:

In ParaView, if items do not appear to be displayed in the RenderView window,
ensure the relevant module is visible by switching on the eye button in the Pipeline
Browser.

2.1.13 Vector plots
Before drawing vectors of the flow velocity, turn off the display of the Slice module by
highlighting it in the Pipeline Browser and clicking the eye button to the left of it. The aim
is to generate a vector glyph for velocity at the centre of each cell. We therefore first need
to filter the cell centres from the mesh geometry as described in section 7.1.7. With the
pitzDailySteady.OpenFOAM module highlighted in the Pipeline Browser, the user should
select Cell Centers from the Filters->Alphabetical menu and then click Apply.

With the Centers highlighted in the Pipeline Browser, the user should then select
Glyph from the Filters->Common menu (or the third row of buttons). The Properties
window panel should appear as shown in Figure 2.6.

When displaying velocity vectors, there are four principal settings required for the
glyphs:

• the glyph type, set to Arrow;

• the arrow direction, set by Orientation Array;

• the arrow lengths, set by Scale Array and Scale Factor;

• the number of arrows, set by Glyph Mode.

On clicking Apply, the glyphs appear as a single colour, e.g. white. The user should colour
the glyphs by velocity magnitude which, as usual, is controlled by setting U in the drop
down menu towards the left of the second row of buttons.

The Legend is also displayed. The user can configure the legend by clicking Edit
Color Map (second button from left, second row). This opens the the Color Map Editor
window. The legend can be configured by clicking by the button furthest to the right of
the search box. This button opens the Edit Color Legend Properties window. The Advanced
Properties gearwheel button should be checked to the right of the search box.

Titles and labels can be fully configured. For Figure 2.7, the legend title is set to
Velocity U [m/s]. The labels are specified to 1 fixed decimal place by unchecking
Automatic Label Format and entering %-#6.1f in the Label Format text box. Add Range
Labels is also unchecked.
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Set Arrow
Set Orientation Array: U

Set No Scale Array
Set Scale Factor: 0.001

Set Glyph Mode: All Points

Figure 2.6: Properties panel for the Glyph filter.

Sample output is shown in Figure 2.7, zooming in on part of the recirculation region
downstream of the step. At the lower wall, glyphs point in a direction opposing that of
the flow adjacent to the wall. This glitch is caused by these glyphs being drawn at the
face centres of the wall boundary patch, where the the velocity magnitude is 0 due to the
no-slip condition. Without any direction to the vectors, ParaView orientates the arrows
in a default x-direction. A quick way to remove these vectors is:

• go back to the pitzDailySteady.OpenFOAM module at the top of the Pipeline
Browser;

• in the Mesh Parts panel, uncheck the lowerWall patch;

• click Apply.

2.1.14 Popular filters in ParaView
ParaView includes over 200 filters which can be listed by the Filters->Alphabetical
menu. Only a small fraction, e.g. 10-15, of these filters are relevant for CFD, which we sug-
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Figure 2.7: Velocities in the backward facing step.

gest adding to the Filters->Favourites menu. To do this, select Manage Favourites
from the Filters->Favourites menu. Search for the following important filters and
click Add>> to add them to the Favourites menu:

• Extract Block, to select components of the domain, e.g. boundary patches and
internal cells;

• Slice, to insert a plane through the geometry;

• Cell Centers and Glyph, principally to draw velocity vectors;

• Stream Tracer and Tube, to draw streamlines;

• Contour, to draw contour lines (on surfaces) and iso-surfaces;

• Feature Edges, to capture features on a surface for better image definition.

2.1.15 Contours
Before drawing contour lines of the flow speed, turn off the display of the Glyph module
by highlighting it in the Pipeline Browser and clicking the eye button to its left. The user
should then highlight the Slice module and colour by velocity U. We will then aim to
draw contour lines on the slice at intervals of U of 1, 2, . . . , 10.

The contour lines can be drawn by applying the Contour filter to the slice. The filter
draws lines in 2D, or surfaces in 3D, along constant values of scalar quantities. Contours
cannot be drawn directly from U, since it is a vector, so we first need to generate a scalar
field of the magnitude of U.

The mag(U) field can be generated using post-processing with function objects, de-
scribed in section 7.3. The user should run the foamPostProcess utility, calling the mag
function object using the -func option as follows:

foamPostProcess -func "mag(U)"
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Select Add a range of values

Figure 2.8: Contours in the backward facing step.

The utility loops over all time directories. For each time directory, it reads in U,
calculates mag(U) and writes it out as a field file back into the time directory. The
mag(U) field must then be loaded into ParaView by: first, from the pitzDailySteady-
.OpenFOAM in the Pipeline Browser, clicking Refresh Times; then, scrolling down to the
Fields panel, selecting mag(U) and clicking Apply.

The user should re-select the Slice module in the Pipeline Browser, then apply the
Contour filter. In the Properties panel, the user should select mag(U) from the Contour
By menu. Under Isosurfaces, the user should first delete the default value by clicking
the – button, then add a range of 10 values as shown in Figure 2.8. The contours can be
displayed with a Wireframe representation with solid black Coloring.

2.1.16 Streamline plots

Before drawing streamlines, the user should turn off the display of the Contour module.
To display streamlines for this 2D example, the user should first highlight the Slice
module in the Pipeline Browser and then apply the Stream Tracer filter.

A new StreamTracer module opens which is configured through its Properties window.
Tracer is created by tracking lines in the direction of flow, starting from seed points. With
Integration Direction BOTH, lines are tracked both upstream and downstream of the
seed points. The user should scroll down the Properties window to configure the Seeds.
The default Seed Type in Line which seeds points along a line drawn between specified
points. In the Line Parameters, the user should can set the two points to (0,−0.025, 0)
to (0.2, 0.0.25, 0). The Resolution specifies the number of seed points distributed along
the line, which should be reduced to 25. On clicking Apply the tracer is generated as
shown in Figure 2.9. The user can experiment with the line points and resolution to
produce different stream tracer output.
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Figure 2.9: Streamlines in the backward facing step.

inlet
lowerWall

Figure 2.10: Uniform flow at the inlet in the backward facing step.

2.1.17 Inlet boundary condition
The user should examine the flow at the inlet boundary of the domain. The velocity
condition is specified in 0/U as fixedValue with a value of (10 0 0). This value is
applied to all faces of the inlet boundary patch. The inlet is adjacent to wall boundaries
where the noSlip condition is applied, giving rise to a sudden change in U, between
adjacent boundary faces.

The user should zoom in around the inlet region of the geometry using the right button
of the mouse. The Slice module should be activated in the Pipeline Browser and coloured
by cell values of p ( selection). In order to highlight the variation in pressure in cells
close to the inlet, the user should apply a custom range of −5 < p < −1 as shown in
Figure 2.10. A custom range is applied by clicking the Rescale to Custom Data Range
button ( ), located fifth from the left of the second row of buttons. A panel opens, in
which the minimum and maximum values of the range should be entered before clicking
the Rescale button. The velocity profile can be shown by returning to the Glyph module
in the Pipeline Browser and making it visible. The profile can be illustrated by scaling
the arrows by the the flow speed. In the Properties of the Glyph, scroll down to the
Scale panel and set Scale Array to U, with Scale By Magnitude and a Scale Factor
of 8e-05. The vectors are assigned a Solid Color of white.

The figure shows the inlet region adjacent to the lower wall boundary. At the left
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of the image, the vectors show a uniform profile. Shear at the wall causes the flow to
decelerate, starting in the near-wall cell. The deceleration causes an increase in pressure,
which produces a driving gradient that redirects the flow slightly away from the wall, to
obey mass conservation.

In order to reduce the pressure increase, the boundary condition can be modified
so that the inlet velocity is no longer uniform. A flowRateInletVelocity boundary con-
dition is a general boundary condition for U, specifying flow at an inlet. Documen-
tation for this boundary condition can be viewed using the foamInfo script, a general
tool which provides documentation for applications, models and tools in OpenFOAM.
It is run for the flowRateInletVelocity boundary condition as follows (noting that the
name can sometimes be abbreviated for simplicity, here flowRateInlet, rather than
flowRateInletVelocity).

foamInfo flowRateInlet

It locates and prints the header file of the related code and extracts the Description and
Usage information from the file. It then identifies associated models, i.e. other boundary
conditions in this case, and lists example cases that use the model. The foamInfo script
is not perfect, but provides useful information quickly in at least nine times out of ten.

The documentation explains that the flowRateInletVelocity condition can specify the
flow by a massFlowRate, volumetricFlowRate or meanVelocity. The user should open
the 0/U in their editor and locate the boundary field entry for the inlet patch. The
condition with a meanVelocity can then be applied by changing the inlet sub-dictionary
as follows:

inlet
{

type flowRateInletVelocity; // modify
meanVelocity 10; // insert
value uniform (10 0 0); // leave

}

The condition evaluates the velocity on the boundary, setting the value for all faces on
the boundary patch. The value entry is therefore redundant for OpenFOAM, but it can
be needed by ParaView to display initial values of initialised fields at patches. Therefore,
the value entry is retained for ParaView’s benefit.

After saving the 0/U file, the user can re-run the simulation to check first that the
flowRateInletVelocity emulates the original fixedValue condition. The controlDict file spec-
ifies that case starts from time 0 and it will overwrite previous results in time directories.
The user can test the new condition simply by re-running the foamRun solver.

foamRun

The solver runs as before, terminating at 285 iterations. The user can return to ParaView
and click the Refresh Times button in the pitzDailySteady.OpenFOAM module of the
Pipeline Browser. There is no change to the results, demonstrating that the flowRateIn-
letVelocity is setting a uniform value of (10 0 0) at this stage.

The user should now modify the flowRateInletVelocity condition in the 0/U file by
including a profile for the velocity. The documentation highlights two customised profile
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function, turbulentBL and laminarBL, which provide power-law and quadtratic profiles
for fully-developed turbulent and laminar boundary layers, respectively. In this example,
add the turbulentBL profile to the boundary condition as follows:

inlet
{

type flowRateInletVelocity;
meanVelocity 10;
profile turbulentBL; // add
value uniform (10 0 0);

}

Before running the simulation again, it it recommended to delete the previous solution
time directories. The results should be deleted now because the solver will likely terminate
at a different time, so the results from the final time directory from the old case will not
be overwritten, potentially causing confusion.

The foamListTimes utility provides a quick, simple way to delete solution time direc-
tories, i.e. retaining the 0 directory. First run foamListTimes in the terminal as follows:

foamListTimes

This returns the list of the solution time directories, 100, 200 and 285, but not 0. The
listed directories can be deleted by including the -rm remove option to foamListTimes, i.e.
running the following command.

foamListTimes -rm

With the time directories containing the results now deleted, the foamRun solver should be
run as before. This time foamRun terminates at 276 iterations. The user should return to
ParaView and click the Refresh Times button in the pitzDailySteady.OpenFOAM module
of the Pipeline Browser.

The change in output times may create confusion for ParaView, causing it to query
times in the time selector with (?) symbols. The selector entries can be rebuilt by
reverting to time 0 or clicking Cache Mesh and Apply. The user can then select the last
time in the sequence (276). The velocity profile and pressure are updated as shown in
Figure 2.11. For pressure, the custom range is moved to −7 < p < −3. The velocity is no
longer uniform at the inlet, but forms a profile according to the turbulentBL function.
The velocity magnitude at the face adjacent to the lower wall is significantly reduced
from previously so the deceleration due to shear is also reduced in the near-wall cell. The
pressure difference between the left corner and surrounding cells is consequently not as
high, approximately +2 m2 s−2 (from -7 to -5) compared to +4 m2 s−2 (from -5 to -1)
previously.

2.1.18 Turbulence model
The backward step case is set up to allow users to try out different turbulence models
quickly. There is comment in the momentumTransport file in the constant directory, listing
different turbulence models tested on this case. Some of the models solve equations for
fields other than k and ε, e.g. ω (omega). To minimise the work when changing models,
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inlet
lowerWall

Figure 2.11: Turbulent boundary layer at the inlet in the backward facing step.

files for these other fields are already included in the 0 directory. Similarly, entries for
schemes and solvers for these fields are included in the fvSchemes and fvSolution files,
respectively (in the system directory).

The user should open the momentumTransport file in their editor to change the turbu-
lence model. They can change the model to realizable k–ε by the following setting.

model realizableKE;

The simulation can now be re-run using this model by deleting the solution time directories
and executing foamRun as follows.

foamListTimes -rm
foamRun

The solver terminates this time at 255 iterations. The user can now return to ParaView and
click Refresh Times to view the results at time 255. The results are shown in Figure 2.12
using the slice with the velocity field and the streamlines filters configured earlier.

The realizable k–ε model is less diffusive that the standard k–ε model. It captures a
secondary vortex at the base of the step which is approximately half the step height. The
recirculation region is also longer, with reattachment occurring at the point the lower wall
begins to taper towards the outlet.

The user can also test other turbulence models. The k–ω SST model is a popular
choice in industrial CFD which can be selected by the following setting in the momen-
tumTransport file.

model kOmegaSST;

It requires initialisation of specific turbulent dissipation rate ω. Item can be calculated
similarly to ε in Equation 2.3 using lm as follows:

ω = C−0.25
µ

k0.5

lm
. (2.4)
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velocity profile
secondary vortex

Figure 2.12: Streamlines with the realizable k–ε model.

bottom corner of the backward step
vectors oscillate between successive solution steps

Figure 2.13: Secondary vortex with k–ω SST model.

Using the estimate lm = 2.54 mm as before, ω = 0.09−0.25×0.3750.5/0.00254 = 440.2 s−−1.
In the 0/omega file, 440.2 is used both for the initial internalField and the inlet value.

The simulation can now be re-run using this model by deleting the solution time
directories and executing foamRun as before. The solver does not terminate early by
converging to within the tolerances specified in the residualControl sub-dictionary of
the fvSolution file. Instead, it terminates at 2000 iterations, the endTime specified in the
controlDict file.

The results with the k–ω SST model show a larger secondary vortex at the base
of the step. The vortex does not stabilise to a steady-state, but instead oscillates a
small amount over successive solution steps. The oscillations can be seen by examining
the velocity vectors at different solution steps, e.g. 1000, 1100, 1200, etc. Figure 2.13
shows the extent of the secondary vortex and indicates where vectors oscillate around the
reattachment point of the vortex.

The secondary vortex can be stabilised by a change to the numerical scheme for
momentum advection. The user should open the fvSchemes file from the system directory.
The discretisation of the advection terms is specified by the keyword entries of the form
“div(phi,...)” in the divSchemes sub-dictionary. Momentum advection uses the lin-
earUpwind scheme as shown below.

div(phi,U) bounded Gauss linearUpwind grad(U);
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bottom corner of the backward step

Figure 2.14: Secondary vortex with k–ω SST model with limiting on grad(U).

The linearUpwind scheme interpolates fields from cell centres to faces by extrapolation
using the cell gradient. The grad(U) entry specifies the form of the gradient calculation,
using the scheme specified in the gradSchemes sub-dictionary. In the example case, it
includes only a default scheme for calculating all gradient terms in all equations.

In order to stabilise the secondary vortex, the cellLimited scheme can be applied
specifically to the discretisation of the velocity gradient grad(U). The syntax is shown
below.

gradSchemes
{

default Gauss linear;
grad(U) cellLimited Gauss linear 1;

}

After saving the fvSchemes file, the simulation can be re-run by deleting the solution time
directories and executing foamRun as before. With the cellLimited scheme applied, the
solution converges normally, with the solver terminating at 285 iterations. The secondary
vortex stabilises as shown in Figure 2.14.

2.2 Breaking of a dam
In this example we shall solve a problem of a simplified dam break in 2 dimensions using
the incompressibleVoF modular solver. The feature of the problem is a transient flow
of two fluids separated by a sharp interface, or free surface. The two-phase algorithm
in incompressibleVoF is based on the volume of fluid (VoF) method in which a phase
transport equation is used to determine the relative volume fraction of the two phases,
or phase fraction α, in each computational cell. Physical properties are calculated as
weighted averages based on this fraction. The nature of the VoF method means that an
interface between the phases is not explicitly computed, but rather emerges as a property
of the phase fraction field. Since the phase fraction can have any value between 0 and 1,
the interface is never precisely defined, but occupies a volume around the region where a
sharp interface should exist.
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The test setup consists of a column of water at rest located behind a membrane on
the left side of a tank. At time t = 0 s, the membrane is removed and the column of
water collapses. During the collapse, the water impacts an obstacle at the bottom of the
tank and creates a complicated flow structure, including several captured pockets of air.
The geometry and the initial setup is shown in Figure 2.15.

0.584 m

0.048 m

0.024 m

0.584 m

0.292 m

0.1459 m0.1461 m

water column

Figure 2.15: Geometry of the dam break.

2.2.1 Mesh generation
The user should go to their run directory and copy the damBreakLaminar case from the
$FOAM_TUTORIALS/incompressibleVoF directory, i.e.

run
cp -r $FOAM_TUTORIALS/incompressibleVoF/damBreakLaminar .

Go into the damBreakLaminar case directory and generate the mesh running blockMesh as
described previously. The damBreakLaminar mesh consist of five blocks; the blockMeshDict
entries are given below.

16 convertToMeters 0.146;
17
18 vertices
19 (
20 (0 0 0)
21 (2 0 0)
22 (2.16438 0 0)
23 (4 0 0)
24 (0 0.32876 0)
25 (2 0.32876 0)
26 (2.16438 0.32876 0)
27 (4 0.32876 0)
28 (0 4 0)
29 (2 4 0)
30 (2.16438 4 0)
31 (4 4 0)
32 (0 0 0.1)
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33 (2 0 0.1)
34 (2.16438 0 0.1)
35 (4 0 0.1)
36 (0 0.32876 0.1)
37 (2 0.32876 0.1)
38 (2.16438 0.32876 0.1)
39 (4 0.32876 0.1)
40 (0 4 0.1)
41 (2 4 0.1)
42 (2.16438 4 0.1)
43 (4 4 0.1)
44 );
45
46 blocks
47 (
48 hex (0 1 5 4 12 13 17 16) (23 8 1) simpleGrading (1 1 1)
49 hex (2 3 7 6 14 15 19 18) (19 8 1) simpleGrading (1 1 1)
50 hex (4 5 9 8 16 17 21 20) (23 42 1) simpleGrading (1 1 1)
51 hex (5 6 10 9 17 18 22 21) (4 42 1) simpleGrading (1 1 1)
52 hex (6 7 11 10 18 19 23 22) (19 42 1) simpleGrading (1 1 1)
53 );
54
55 defaultPatch
56 {
57 type empty;
58 }
59
60 boundary
61 (
62 leftWall
63 {
64 type wall;
65 faces
66 (
67 (0 12 16 4)
68 (4 16 20 8)
69 );
70 }
71 rightWall
72 {
73 type wall;
74 faces
75 (
76 (7 19 15 3)
77 (11 23 19 7)
78 );
79 }
80 lowerWall
81 {
82 type wall;
83 faces
84 (
85 (0 1 13 12)
86 (1 5 17 13)
87 (5 6 18 17)
88 (2 14 18 6)
89 (2 3 15 14)
90 );
91 }
92 atmosphere
93 {
94 type patch;
95 faces
96 (
97 (8 20 21 9)
98 (9 21 22 10)
99 (10 22 23 11)

100 );
101 }
102 );
103
104
105 // ************************************************************************* //

The mesh is written into a set of files in a polyMesh directory in the constant directory.
The user can list the contents of the directory to reveal the set of files/

ls constant/polyMesh
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The files include: points, a list of the cell vertices; faces, a list of the cell faces; owner and
neighbour, containing the indices of cells connected to a given face; boundary, a description
of the boundary patches.

2.2.2 Boundary conditions
The boundary file can be read and understood by the user. The user should take a look
at its contents, either by opening it in a file editor or printing out in the terminal window
using the cat utility.

cat constant/polyMesh/boundary

The file contains a list of five boundary patches: leftWall, rightWall, lowerWall,
atmosphere and defaultFaces. The user should notice the type of the patches. Firstly,
the atmosphere is a standard patch, i.e. has no special attributes, merely an entity on
which boundary conditions can be specified. Then, the defaultFaces patch is formed of
block faces that are omitted from the boundary sub-dictionary in the blockMeshDict
file. Those block faces form a patch whose properties are specified in a defaultPatch
sub-dictionary in the blockMeshDict file. In this case, the default type is set to empty
since the patch normal is in the direction we will not solve in this 2D case.

The leftWall, rightWall and lowerWall patches are each a wall. Like the generic
patch, the wall type contains no geometric or topological information about the mesh and
only differs from the plain patch in that it identifies the patch as a wall. This is required by
some modelling, e.g. turbulent wall functions and some turbulence models which include
the distance to the nearest wall in their calculations.

With VoF specifically, surface tension models can include wall adhesion at the contact
point between the interface and wall surface. Wall adhesion models can be applied through
a special boundary condition on the alpha (α) field, e.g. the alphaContactAngle boundary
condition, which requires the user to specify a static contact angle, theta0.

This example ignores surface tension effects between the wall and interface. This can
be done can do this by setting the static contact angle, θ0 = 90◦, but a simpler approach
is to apply the zeroGradient condition to alpha on the walls.

The top boundary is free to the atmosphere so needs to permit both outflow and inflow
according to the internal flow. We therefore use a combination of boundary conditions
for pressure and velocity that does this while maintaining stability. They are:

• prghTotalPressure, applied to the pressure field, minus the hydrostatic component,
pρgh, given by Equation 6.4;

• pressureInletOutletVelocity, applied to velocity U, which sets zeroGradient on all com-
ponents of U, except where there is inflow, in which case a fixedValue condition is
applied to the tangential component;

• inletOutlet applied to other fields, which is a zeroGradient condition when flow out-
wards, fixedValue when flow is inwards.

At all wall boundaries, the fixedFluxPressure boundary condition is applied to the pressure
field, which adjusts the pressure gradient so that the boundary flux matches the veloc-
ity boundary condition for solvers that include body forces such as gravity and surface
tension.

The defaultFaces patch representing the front and back planes of the 2D problem,
is, as usual, an empty type.
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2.2.3 Phases
The fluid phases are specified in the phaseProperties file in the constant directory as follows:

16
17 phases (water air);
18
19 sigma 0.07;
20
21
22 // ************************************************************************* //

It lists two phases, water and air. Equations for phase fraction are solved for the phases
in the list, except the last phase listed, i.e. air in this case. Since there are only two
phases, only one phase fraction equation is solved in this case, for the water phase fraction
αwater, specified in the file alpha.water in the 0 directory.

The phaseProperties file also contains an entry for the surface tension between the two
phases, specified by the keyword sigma in units Nm−1.

2.2.4 Setting initial fields
Unlike the previous cases, we shall now specify a non-uniform initial condition for the
phase fraction αwater where

αwater =

1 for the water phase
0 for the air phase

(2.5)

This is done by running the setFields utility. It requires a setFieldsDict dictionary, located
in the system directory, whose entries for this case are shown below.

16
17 defaultValues
18 {
19 alpha.water 0;
20 }
21
22 zones
23 {
24 waterColumn
25 {
26 type box;
27 zoneType cell;
28
29 box (0 0 -1) (0.1461 0.292 1);
30
31 values
32 {
33 alpha.water 1;
34 }
35 }
36 }
37
38
39 // ************************************************************************* //

The defaultValues sets the default values of fields, i.e. the value the field takes
unless specified otherwise in zones. The zones sub-dictionary contains one or more
zones, which each zone contain a values entry to override the defaults in that zone. Each
zone is defined as described in section 5.6.

The zone is generated in this example by a box defined by minimum and maximum
bounds, (0, 0,−1) and (0.14610.2921) respectively. This defines the region of cells de-
scribing the water column, where phase fraction αwater is specified as 1.

The setFields utility reads fields from file and, after re-calculating those fields, will write
them back to file. In the damBreakLaminar case, the alpha.water field is initially stored in
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its original form with the name alpha.water.orig. A field file with the .orig extension
is read in when the actual file does not exist, so setFields will read alpha.water.orig
but write the resulting output to alpha.water (or alpha.water.gz if compression is
switched on). This way the original file is not overwritten, so can be reused.

The user should execute setFields like any other utility by:

setFields

Using paraFoam, check that the initial alpha.water field corresponds to the desired dis-
tribution as in Figure 2.16.

0.0
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0.9
1.0

Phase fraction, α1

Figure 2.16: Initial conditions for phase fraction alpha.water.

2.2.5 Fluid properties
The physical properties for the air and water phases are specified in physicalProperties.air
and physicalProperties.water files, respectively, in the constant directory. Physical prop-
erties describe characteristics of the fluid in a absence of flow. Each file specifies the
viscosity model through the viscosityModel keyword, which is set to constant to indi-
cate the value is unchanging. The viscosity is then specified by the nu keyword in units
m2 s−1. The density of each fluid is also specified by the keyword rho in units kgm−3.
The physicalProperties.air file is shown below as an example:

16
17 viscosityModel constant;
18
19 nu 1.48e-05;
20
21 rho 1;
22
23
24 // ************************************************************************* //

If the viscosity does change according to the flow, e.g. as in non-Newtonian or visco-
elastic fluids, then those models are specified through the momentumProperties file, as
described in section 8.3.
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2.2.6 Gravity
Gravitational acceleration is uniform across the domain and is specified in a file named
g in the constant directory. Unlike a normal field file, e.g. U and p, g is a uniformDimen-
sionedVectorField and so simply contains a set of dimensions and a value that represents
(0, 9.81, 0) m s−2 for this case:

16
17 dimensions [0 1 -2 0 0 0 0];
18 value (0 -9.81 0);
19
20
21 // ************************************************************************* //

2.2.7 Turbulence modelling
As in the cavity example, the choice of turbulence modelling method is selectable at run-
time through the simulationType keyword in momentumTransport dictionary. In this
example, we wish to run without turbulence modelling so we set laminar:

16
17 simulationType laminar;
18
19
20 // ************************************************************************* //

2.2.8 Time step control
The simulation of the damBreakLaminar case is fully transient so the time step requires
attention. The Courant number Co is an important consideration relating to time step.
It is dimensionless parameter which can be defined for each cell as:

Co = δt|U|
δx

(2.6)

where δt is the time step, |U| is the magnitude of the velocity through that cell and δx
is the cell size in the direction of the velocity. With explicit solution, stability requires
the maximum Co < 1 at least; stricter limits exist depending on the choice of advection
scheme. Implicit solutions do not have the same stability limit of the maximum Co, but
temporal accuracy becomes more relevant as Co increased beyond 1.

Time step control is particularly important with interface-capturing. The incompress-
ibleVoF solver module uses the multidimensional universal limiter for explicit solution
(MULES), created by Henry Weller, to maintain boundedness of the phase fraction. Co
needs to be limited depending on the choice of MULES algorithm. With the original
explicit MULES algorithm, an upper limit of Co ≈ 0.25 for stability is typically required.
However, there is also the semi-implicit version of MULES, specified by the MULESCorr
switch in the fvSolution file. For semi-implicit MULES, there is really no upper limit in
Co for stability, but instead the level is determined by requirements of temporal accuracy.

In general it is difficult to specify a fixed time-step to satisfy the Co criterion since
|U| is changing from cell to cell during the simulation. Instead, automatic adjustment
of the time step is specified in the controlDict by switching adjustTimeStep to on and
specifying the maximum Co for the phase fields, maxAlphaCo, and other fields, maxCo. In
this example, the maxAlphaCo and maxCo are set to 1.0. The upper limit on time step
maxDeltaT can be set to a value that will not be exceeded in this simulation, e.g. 1.0.

By using automatic time step control, the steps themselves are never rounded to a
convenient value. Consequently if we request that OpenFOAM saves results at a fixed
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number of time step intervals, the times at which results are saved are somewhat arbitrary.
However with automatic time step adjustment, results can be written at fixed times using
the adjustableRunTime option for writeControl in the controlDict dictionary. With this
option, the automatic time stepping procedure further adjusts their time steps so that it
‘hits’ on the exact times specified by the writeInterval, set to 0.05 in this example.
The controlDict dictionary entries are shown below.

16
17 solver incompressibleVoF;
18
19 startFrom startTime;
20
21 startTime 0;
22
23 stopAt endTime;
24
25 endTime 1;
26
27 deltaT 0.001;
28
29 writeControl adjustableRunTime;
30
31 writeInterval 0.05;
32
33 purgeWrite 0;
34
35 writeFormat ascii;
36
37 writePrecision 6;
38
39 writeCompression off;
40
41 timeFormat general;
42
43 timePrecision 6;
44
45 runTimeModifiable yes;
46
47 adjustTimeStep yes;
48
49 maxCo 1;
50
51 maxAlphaCo 1;
52
53 maxDeltaT 1;
54
55 DebugSwitches
56 {
57 MULES 1;
58 }
59
60 // ************************************************************************* //

2.2.9 Discretisation schemes
The MULES method, used by the incompressibleVoF modular solver, maintains bound-
edness of the phase fraction independently of the underlying numerical scheme, mesh
structure, etc. The choice of schemes for convection are therefore not restricted to those
that are strongly stable or bounded, such as upwind differencing.

The convection schemes settings are made in the divSchemes sub-dictionary of the
fvSchemes dictionary. In this example, the convection term in the momentum equation,
∇ • (ρUU), denoted by the div(rhoPhi,U) keyword, uses Gauss linearUpwind grad(U)
to produce good accuracy.

The ∇ • (Uα) term, represented by the div(phi,alpha) keyword uses a bespoke
interfaceCompression scheme where the specified coefficient is a factor that controls
the compression of the interface where: 0 corresponds to no compression; 1 corresponds to
conservative compression; and, anything larger than 1, relates to enhanced compression
of the interface. We generally use a value of 1.0, as in this example.
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The other discretised terms use commonly employed schemes so that the fvSchemes
dictionary entries is as follows.

16
17 ddtSchemes
18 {
19 default Euler;
20 }
21
22 gradSchemes
23 {
24 default Gauss linear;
25 }
26
27 divSchemes
28 {
29 div(phi,alpha) Gauss interfaceCompression vanLeer 1;
30
31 div(rhoPhi,U) Gauss linearUpwind grad(U);
32
33 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;
34 }
35
36 laplacianSchemes
37 {
38 default Gauss linear uncorrected;
39 }
40
41 interpolationSchemes
42 {
43 default linear;
44 }
45
46 snGradSchemes
47 {
48 default uncorrected;
49 }
50
51
52 // ************************************************************************* //

2.2.10 Linear-solver control
In the fvSolution file, the sub-dictionary in solvers for alpha.water contains elements that
are specific to the MULES algorithm as shown below.
"alpha.water.*"
{

nAlphaCorr 2;
nAlphaSubCycles 1;

MULESCorr yes;

MULES
{

nIter 10;
tolerance 1e-2;

}

solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-8;
relTol 0;

}

MULES calculates two limiters to keep the phase fraction within the lower and upper
bounds of 0 and 1. The limiter calculation is iterative, with the maximum number of
iterations specified by nIter and the tolerance specified by tolerance. Here, nIter is
set to a high value (10) but the tolerance setting ensures that number of iterations will
not be reached.

The semi-implicit version of MULES is activated by the MULESCorr switch. It first
calculates an implicit, upwind solution before applying MULES as a higher-order correc-
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tion. The linear solver must be configured for the implicit, upwind solution, through the
solver, smoother, tolerance and relTol parameters.

The nAlphaCorr keyword which controls the number of iterations of the phase fraction
equation within a solution step. The iteration is used to overcome nonlinearities in the
advection which are present in this case due to the interfaceCompression scheme.

2.2.11 Running the code
Running of the code has been described in the previous tutorial. Try the following, that
uses tee, a command that enables output to be written to both standard output and files:

foamRun | tee log

The code will now be run interactively, with a copy of output stored in the log file.

2.2.12 Post-processing
Post-processing of the results can now be done in the usual way. The user can monitor
the development of the phase fraction alpha.water in time, e.g. see Figure 2.17.

Figure 2.17: Phase fraction α at t = 0.25 s (left) and 0.50 s (right).

2.2.13 Running in parallel
The results from the previous example are generated using a fairly coarse mesh. We now
wish to increase the mesh resolution and re-run the case. Using a finer mesh, we can then
demonstrate the parallel processing capability of OpenFOAM.

The user should first clone the damBreakLaminar case, e.g. by
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run
foamCloneCase damBreakLaminar damBreakLaminarFine

Change into the new case directory (with cd) and change the blocks description in the
blockMeshDict dictionary to

blocks
(

hex (0 1 5 4 12 13 17 16) (46 10 1) simpleGrading (1 1 1)
hex (2 3 7 6 14 15 19 18) (40 10 1) simpleGrading (1 1 1)
hex (4 5 9 8 16 17 21 20) (46 76 1) simpleGrading (1 2 1)
hex (5 6 10 9 17 18 22 21) (4 76 1) simpleGrading (1 2 1)
hex (6 7 11 10 18 19 23 22) (40 76 1) simpleGrading (1 2 1)

);

Here, the entry is presented as printed from the blockMeshDict file; in short the user must
change the mesh densities, e.g. the 46 10 1 entry, and some of the mesh grading entries
to 1 2 1. Once the dictionary is correct, generate the mesh by running blockMesh.

As the mesh has now changed from the damBreakLaminar example, the user must re-
initialise the phase field alpha.water in the 0 time directory since it contains a number
of elements that is inconsistent with the new mesh. Note that there is no need to change
the U and p_rgh fields since they are specified as uniform which is independent of the
number of elements in the field.

The user should then rerun the setFields utility. However, the mesh size is now incon-
sistent with the number of elements in the alpha.water file in the 0 directory, so the user
must delete that file so that setFields uses the original alpha.water.orig file.

rm 0/alpha.water
setFields

Parallel computing uses domain decomposition, in which the geometry and associated
fields are broken into pieces and allocated to separate processors for solution. The first
step required to run a parallel case is therefore to decompose the domain using the decom-
posePar utility. The decomposePar utility needs to be configured using a decomposeParDict
file located in the system directory. Sample configuration files can be found within the etc
directory in the OpenFOAM installation, which can be copied to the case directory by
running the foamGet script. A decomposeParDict file can therefore be copied by typing:

foamGet decomposeParDict

It responds by offering one of two files, one lightly annotated and one heavily annotated.
The former is suggested by default so hit Enter to accept that file. The user should
open the decomposeParDict file in their editor. The first entry is numberOfSubdomains
which specifies the number of subdomains into which the case will be decomposed, usually
corresponding to the number of processors available for the case. Change the entry as
follows.

numberOfSubdomains 4;
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This example uses the hierarchical method of decomposition. It requires the hier-
archicalCoeffs to be configured according to the following criteria. The domain is split
into pieces, or subdomains, in the x, y and z directions, the number of subdomains in
each direction being given by the vector n. As this geometry is 2 dimensional, the 3rd
direction, z, cannot be split, hence nz must equal 1. The nx and ny components of n
split the domain in the x and y directions and must be specified so that the number
of subdomains specified by nx and ny equals the specified numberOfSubdomains, i.e.

nxny = numberOfSubdomains.
It is beneficial to keep the number of cell faces adjoining the subdomains to a minimum

so, for a square geometry, it is best to keep the split between the x and y directions fairly
even. Since we have 4 subdomains, the user should set nx = ny = 2 as follows.

hierarchicalCoeffs
{

n (2 2 1);
order xyz;

}

The user should now save the file and then run decomposePar by the following command.

decomposePar

The terminal output shows that the decomposition is distributed evenly between the sub-
domains. The decomposition writes the mesh and fields of each sub-domain into separate
sub-directories named processor<N>, where N is the sub-domain ID, e.g. 0, 1, 2, etc. The
user should list the files in the case directory to confirm that four directories processor0,
processor1, processor2 and processor3 exist.

This example presents running in parallel with the openMPI implementation of the
standard message-passing interface (MPI). The following command runs on 4 cores of a
local multi-processor CPU.

mpirun -np 4 foamRun -parallel

The user can consult section 3.4 for more details of how to run a case in parallel. For
example, the user may run on more nodes over a network by creating a file that lists the
host names of the machines on which the case is to be run as described in section 3.4.3.

2.2.14 Post-processing a case run in parallel
When the case runs in parallel, the results are written into time directories within the
processor<N> sub-directories. The user can confirm this by listing the time directories
for the processor0 directory.

ls processor0

It is possible to post-process an individual sub-domain by treating the individual
processor directory as a case in its own right. For example, to view the processor1
sub-domain in ParaView, the user can launch paraFoam by running the following command.

paraFoam -case processor1
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Figure 2.18: Mesh of processor 2 in parallel processed case.

Figure 2.18 shows the mesh from this sub-domain, following the decomposition of the
domain using the simple method.

The decomposed fields and mesh can also be viewed directly in ParaView, by first
running the paraFoam script as normal.

paraFoam

When ParaView opens, the user can select the Decomposed Case before hitting Apply. Th
entire case will then appear in the RenderView window.

One further option involves first reassembling the case back to a single domain. The
reconstructPar utility performs this reassembly, taking the field files from time directories
from each processor sub-domain and building equivalent field files for the complete
domain. The user can test this by running.

reconstructPar

The fields are reconstructed are written to solution time directories in the case directory.
These fields can be visualised as normal in ParaView. The results from the fine mesh
are shown in Figure 2.19. The user can see that the resolution of interface has improved
significantly compared to the coarse mesh.

2.3 Stress analysis of a plate with a hole
This tutorial describes how to pre-process, run and post-process a case involving linear-
elastic, steady-state stress analysis on a square plate with a circular hole at its centre.
The plate dimensions are: side length 4 m and radius R = 0.5 m. It is loaded with a
uniform traction of σ = 10 kPa over its left and right faces as shown in Figure 2.20. Two
symmetry planes can be identified for this geometry and therefore the solution domain
need only cover a quarter of the geometry, shown by the shaded area in Figure 2.20.

The problem can be approximated as 2D since the load is applied in the plane of
the plate. In a Cartesian coordinate system there are two possible assumptions to take
in regard to the behaviour of the structure in the third dimension: (1) the plane stress
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Figure 2.19: Phase fraction α at t = 0.25 s (left) and 0.50 s (right).

condition, in which the stress components acting out of the 2D plane are assumed to be
negligible; (2) the plane strain condition, in which the strain components out of the 2D
plane are assumed negligible. The plane stress condition is appropriate for solids whose
third dimension is thin as in this case; the plane strain condition is applicable for solids
where the third dimension is thick.

An analytical solution exists for loading of an infinitely large, thin plate with a circular
hole. The solution for the stress normal to the vertical plane of symmetry is

(σxx)x=0 =


σ

(
1 + R2

2y2 + 3R4

2y4

)
for |y| ≥ R

0 for |y| < R

(2.7)

Results from the simulation will be compared with this solution. At the end of the
tutorial, the user can: investigate the sensitivity of the solution to mesh resolution and
mesh grading; and, increase the size of the plate in comparison to the hole to try to
estimate the error in comparing the analytical solution for an infinite plate to the solution
of this problem of a finite plate.

The example uses the solidDisplacement modular solver. The user should go to their
run directory, copy the plateHole case from the $FOAM_TUTORIALS/solidDisplacement
directory and finally change into the plateHole case directory.

run
cp -r $FOAM_TUTORIALS/solidDisplacement/plateHole .
cd plateHole

2.3.1 Mesh generation
The domain consists of four blocks, some of which have arc-shaped edges. The block
structure for the part of the mesh in the x− y plane is shown in Figure 2.21. As already
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Figure 2.20: Geometry of the plate with a hole.

mentioned in section 2.1.2, all geometries are generated in 3D in OpenFOAM even if the
case is to be as a 2D problem. Therefore a dimension of the block in the z direction has
to be chosen; here, 0.5 m is selected. It does not affect the solution since the traction
boundary condition is specified as a stress rather than a force, thereby making the solution
independent of the cross-sectional area. The user should open the blockMeshDict file in
an editor, as listed below.

16 convertToMeters 1;
17
18 vertices
19 (
20 (0.5 0 0)
21 (1 0 0)
22 (2 0 0)
23 (2 0.707107 0)
24 (0.707107 0.707107 0)
25 (0.353553 0.353553 0)
26 (2 2 0)
27 (0.707107 2 0)
28 (0 2 0)
29 (0 1 0)
30 (0 0.5 0)
31 (0.5 0 0.5)
32 (1 0 0.5)
33 (2 0 0.5)
34 (2 0.707107 0.5)
35 (0.707107 0.707107 0.5)
36 (0.353553 0.353553 0.5)
37 (2 2 0.5)
38 (0.707107 2 0.5)
39 (0 2 0.5)
40 (0 1 0.5)
41 (0 0.5 0.5)
42 );
43
44 blocks
45 (
46 hex (5 4 9 10 16 15 20 21) (10 10 1) simpleGrading (1 1 1)
47 hex (0 1 4 5 11 12 15 16) (10 10 1) simpleGrading (1 1 1)
48 hex (1 2 3 4 12 13 14 15) (20 10 1) simpleGrading (1 1 1)
49 hex (4 3 6 7 15 14 17 18) (20 20 1) simpleGrading (1 1 1)
50 hex (9 4 7 8 20 15 18 19) (10 20 1) simpleGrading (1 1 1)
51 );
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Figure 2.21: Block structure of the mesh for the plate with a hole.

52
53 edges
54 (
55 arc 0 5 (0.469846 0.17101 0)
56 arc 5 10 (0.17101 0.469846 0)
57 arc 1 4 (0.939693 0.34202 0)
58 arc 4 9 (0.34202 0.939693 0)
59 arc 11 16 (0.469846 0.17101 0.5)
60 arc 16 21 (0.17101 0.469846 0.5)
61 arc 12 15 (0.939693 0.34202 0.5)
62 arc 15 20 (0.34202 0.939693 0.5)
63 );
64
65 boundary
66 (
67 left
68 {
69 type symmetryPlane;
70 faces
71 (
72 (8 9 20 19)
73 (9 10 21 20)
74 );
75 }
76 right
77 {
78 type patch;
79 faces
80 (
81 (2 3 14 13)
82 (3 6 17 14)
83 );
84 }
85 down
86 {
87 type symmetryPlane;
88 faces
89 (

OpenFOAM-13



U-56 Tutorials

90 (0 1 12 11)
91 (1 2 13 12)
92 );
93 }
94 up
95 {
96 type patch;
97 faces
98 (
99 (7 8 19 18)

100 (6 7 18 17)
101 );
102 }
103 hole
104 {
105 type patch;
106 faces
107 (
108 (10 5 16 21)
109 (5 0 11 16)
110 );
111 }
112 frontAndBack
113 {
114 type empty;
115 faces
116 (
117 (10 9 4 5)
118 (5 4 1 0)
119 (1 4 3 2)
120 (4 7 6 3)
121 (4 9 8 7)
122 (21 16 15 20)
123 (16 11 12 15)
124 (12 13 14 15)
125 (15 14 17 18)
126 (15 18 19 20)
127 );
128 }
129 );
130
131
132 // ************************************************************************* //

Until now, we have only specified straight edges in the geometries of previous tutorials but
here we need to specify curved edges. These are specified under the edges keyword entry
which is a list of non-straight edges. The syntax of each list entry begins with the type of
curve, including arc, simpleSpline, polyLine etc., described further in section 5.4.3. In
this example, all the edges are circular and so can be specified by the arc keyword entry.
The following entries are the labels of the start and end vertices of the arc and a point
vector through which the circular arc passes.

The blocks in this blockMeshDict do not all have the same orientation. As can be seen
in Figure 2.21 the x2 direction of block 0 is equivalent to the −x1 direction for block 4.
This means care must be taken when defining the number and distribution of cells in each
block so that the cells match up at the block faces.

Six patches are defined: one for each side of the plate, one for the hole and one for the
front and back planes. The left and down patches are both a symmetry plane. Since this
is a geometric constraint, it is included in the definition of the mesh, rather than being
purely a specification on the boundary condition of the fields. Therefore they are defined
as such using a special symmetryPlane type as shown in the blockMeshDict.

The frontAndBack patch represents the plane which is ignored in a 2D case. Again
this is a geometric constraint so is defined within the mesh, using the empty type as shown
in the blockMeshDict. For further details of boundary types and geometric constraints,
the user should refer to section 5.3.

The remaining patches are of the regular patch type. The mesh should be generated
using blockMesh and can be viewed in paraFoam as described in section 2.1.3. It should
appear as in Figure 2.22.
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Figure 2.22: Mesh of the hole in a plate problem.

2.3.2 Boundary and initial conditions
Once the mesh generation is complete, the initial field with boundary conditions must be
set. For a stress analysis case without thermal stresses, only displacement D needs to be
set. The 0/D is as follows:

16 dimensions [0 1 0 0 0 0 0];
17
18 internalField uniform (0 0 0);
19
20 boundaryField
21 {
22 left
23 {
24 type symmetryPlane;
25 }
26 right
27 {
28 type tractionDisplacement;
29 traction uniform (10000 0 0);
30 pressure uniform 0;
31 value uniform (0 0 0);
32 }
33 down
34 {
35 type symmetryPlane;
36 }
37 up
38 {
39 type tractionDisplacement;
40 traction uniform (0 0 0);
41 pressure uniform 0;
42 value uniform (0 0 0);
43 }
44 hole
45 {
46 type tractionDisplacement;
47 traction uniform (0 0 0);
48 pressure uniform 0;
49 value uniform (0 0 0);
50 }
51 frontAndBack
52 {
53 type empty;
54 }
55 }
56
57 // ************************************************************************* //

Firstly, it can be seen that the displacement initial conditions are set to (0, 0, 0) m. The
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left and down patches must be both of symmetryPlane type since they are specified
as such in the mesh description in the constant/polyMesh/boundary file. Similarly the
frontAndBack patch is declared empty.

The other patches are traction boundary conditions, set by a specialist tractionDis-
placement boundary type. The traction boundary conditions are specified by a linear
combination of: (1) a boundary traction vector under keyword traction; (2) a pressure
that produces a traction normal to the boundary surface that is defined as negative when
pointing out of the surface, under keyword pressure. The up and hole patches are zero
traction so the boundary traction and pressure are set to zero. For the right patch the
traction should be (1e4, 0, 0) Pa and the pressure should be 0 Pa.

2.3.3 Physical properties
The physical properties for the case are set in the physicalProperties dictionary in the
constant directory, shown below:

16
17 rho
18 {
19 type uniform;
20 value 7854;
21 }
22
23 nu
24 {
25 type uniform;
26 value 0.3;
27 }
28
29 E
30 {
31 type uniform;
32 value 2e+11;
33 }
34
35 Cv
36 {
37 type uniform;
38 value 434;
39 }
40
41 kappa
42 {
43 type uniform;
44 value 60.5;
45 }
46
47 alphav
48 {
49 type uniform;
50 value 1.1e-05;
51 }
52
53 planeStress yes;
54 thermalStress no;
55
56
57 // ************************************************************************* //

The file includes mechanical properties of steel:

• Density rho = 7854 kgm−3

• Young’s modulus E = 2× 1011 Pa

• Poisson’s ratio nu = 0.3

The planeStress switch is set to yes to adopt the plane stress assumption in this 2D
case. The solidDisplacementFoam solver may optionally solve a thermal equation that is
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coupled with the momentum equation through the thermal stresses that are generated.
The user specifies at run time whether OpenFOAM should solve the thermal equation by
the thermalStress switch (currently set to no). The thermal properties are also specified
for steel for this case, i.e.:

• Specific heat capacity Cp = 434 Jkg−1K−1

• Thermal conductivity kappa = 60.5 Wm−1K−1

• Thermal expansion coefficient alphav = 1.1× 10−5 K−1

For thermal calculations, the temperature field variable T is present in the 0 directory.

2.3.4 Control
As before, the information relating to the control of the solution procedure are read in
from the controlDict dictionary. For this case, the startTime is 0 s. The time step is
not important since this is a steady state case; in this situation it is best to set the time
step deltaT to 1 so it simply acts as an iteration counter for the steady-state case. The
endTime, set to 100, then acts as a limit on the number of iterations. The writeInterval
can be set to 20.

The controlDict entries are as follows:
16
17 solver solidDisplacement;
18
19 startFrom startTime;
20
21 startTime 0;
22
23 stopAt endTime;
24
25 endTime 100;
26
27 deltaT 1;
28
29 writeControl timeStep;
30
31 writeInterval 20;
32
33 purgeWrite 0;
34
35 writeFormat ascii;
36
37 writePrecision 6;
38
39 writeCompression off;
40
41 timeFormat general;
42
43 timePrecision 6;
44
45 runTimeModifiable true;
46
47 // ************************************************************************* //

2.3.5 Discretisation schemes and linear-solver control
Let us turn our attention to the fvSchemes dictionary. Firstly, the problem we are
analysing is steady-state so the user should select SteadyState for the time derivatives
in timeScheme. This essentially switches off the time derivative terms. Not all solvers,
especially in fluid dynamics, work for both steady-state and transient problems but solid-
DisplacementFoam does work, since the base algorithm is the same for both types of
simulation.
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The momentum equation in linear-elastic stress analysis includes several explicit terms
containing the gradient of displacement. The calculations benefit from accurate and
smooth evaluation of the gradient. Normally, in the finite volume method the discreti-
sation is based on Gauss’s theorem. The Gauss method is sufficiently accurate for most
purposes but, in this case, the least squares method will be used. The user should there-
fore open the fvSchemes dictionary in the system directory and ensure the leastSquares
method is selected for the grad(U) gradient discretisation scheme in the gradSchemes
sub-dictionary:

16
17 d2dt2Schemes
18 {
19 default steadyState;
20 }
21
22 ddtSchemes
23 {
24 default Euler;
25 }
26
27 gradSchemes
28 {
29 default leastSquares;
30 }
31
32 divSchemes
33 {
34 default none;
35 div(sigmaD) Gauss linear;
36 }
37
38 laplacianSchemes
39 {
40 default Gauss linear corrected;
41 }
42
43 interpolationSchemes
44 {
45 default linear;
46 }
47
48 snGradSchemes
49 {
50 default none;
51 }
52
53 // ************************************************************************* //

The fvSolution dictionary in the system directory controls the linear equation solvers and
algorithms used in the solution. The user should first look at the solvers sub-dictionary
and notice that the choice of solver for D is GAMG. The solver tolerance should be set to
10−6 for this problem. The solver relative tolerance, denoted by relTol, sets the required
reduction in the residuals within each iteration. It is uneconomical to set a tight (low)
relative tolerance within each iteration since a lot of terms in each equation are explicit
and are updated as part of the segregated iterative procedure. Therefore a reasonable
value for the relative tolerance is 0.01, or possibly even higher, say 0.1, or in some cases
even 0.9 (as in this case).

16
17 solvers
18 {
19 "(D|e)"
20 {
21 solver GAMG;
22 tolerance 1e-06;
23 relTol 0.9;
24 smoother GaussSeidel;
25 nCellsInCoarsestLevel 20;
26 }
27 }
28
29 PIMPLE

OpenFOAM-13



2.3 Stress analysis of a plate with a hole U-61

30 {
31 compactNormalStress yes;
32 }
33
34
35 // ************************************************************************* //

2.3.6 Running the code
The user can now try running foamRun in the background of the terminal. When running
an OpenFOAM application in the background, the standard output (log information)
should be redirected to a file. In the command below, standard output is written to a file
named log which can be examined afterwards.

foamRun > log &

The user should check the convergence information by viewing the generated log file. It
shows the number of iterations and the initial and final residuals of the displacement in
each direction being solved. The final residual should always be less than 0.9 times the
initial residual as this iteration tolerance set. By the end of the simulation, the initial
residuals have reduced towards the convergence tolerance of 10−6.

2.3.7 Post-processing
The solidDisplacementFoam solver outputs the stress field σ as a symmetric tensor field
sigma. To post-process individual scalar field components, σxx, σxy etc., the user can
run the foamPostProcess utility, calling the components function object on the sigma field
using the -func option as follows:

foamPostProcess -func "components(sigma)"

Components named sigmaxx, sigmaxy etc. are written to time directories of the case.
The σxx stresses can be viewed in ParaView as shown in Figure 2.23.
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Figure 2.23: σxx stress field in the plate with hole.

In order to compare the solution to the analytical solution of Equation 2.7, data of
σxx must be extracted along the left edge symmetry plane of our domain. The user may
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Figure 2.24: Normal stress along the vertical symmetry (σxx)x=0

generate the required graph data using the foamPostProcess utility with the graphUniform
function. Unlike earlier examples of foamPostProcess where no configuration is required,
this example includes a graphUniform file pre-configured in the system directory. The
sample line is set between (0.0, 0.5, 0.25) and (0.0, 2.0, 0.25), and the fields are specified
in the fields list:

9 Writes graph data for specified fields along a line, specified by start and
10 end points. A specified number of graph points are used, distributed
11 uniformly along the line.
12
13 \*---------------------------------------------------------------------------*/
14
15 start (0 0.5 0.25);
16 end (0 2 0.25);
17 nPoints 100;
18
19 fields (sigmaxx);
20
21 axis y;
22
23 #includeEtc "caseDicts/functions/graphs/graphUniform.cfg"
24
25 // ************************************************************************* //

The user should execute postProcessing with the graphUniform function:

foamPostProcess -func graphUniform

Data is written in raw 2 column format into files within time subdirectories of a post-
Processing/graphUniform directory, e.g. the data at t = 100 s is found within the file
graphUniform/100/line.xy. If the user has GnuPlot installed they launch it (by typing
gnuplot) and then plot both the numerical data and analytical solution as follows:

plot [0.5:2] [0:] "postProcessing/graphUniform/100/line.xy",
1e4*(1+(0.125/(x**2))+(0.09375/(x**4)))

An example plot is shown in Figure 2.24.
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Chapter 3

Applications and libraries

The examples in Chapter 2 show that OpenFOAM provides a range of software ‘tools’
that are run from a terminal command line. The tools include applications which are ex-
ecutable programs written in C++, the base programming language of OpenFOAM. Ap-
plications obtain most of the functionality from OpenFOAM’s vast store of pre-compiled
libraries, also written in C++. Since OpenFOAM is open source software, users have the
freedom to create their own applications and libraries. Applications are generally split
into two categories:

• solvers, e.g. foamRun, that perform CFD calculations involving fluid dynamics, en-
ergy, etc.;

• utilities, e.g. blockMesh and foamPostProcess, that perform other tasks in CFD like
meshing and post-processing.

Prior to version 11 of OpenFOAM, there were many solvers, since separate ones were
written for various different types of flow, e.g. simpleFoam, pimpleFoam, etc. However,
most flow solvers are now written as modules, e.g. incompressibleFluid, incompressibleVoF
and e.g.solid which are loaded by the general foamRun (or foamMultiRun) solvers. Rather
than existing as an application, each solver module is compiled into a library of its own.

In addition to applications, the tools in OpenFOAM also include shell scripts, e.g.
paraFoam, foamInfo and foamGet. Many of the scripts help with the configuration of
cases.

This chapter gives an overview of applications and libraries, including their creation,
modification, compilation and execution.

3.1 The programming language of OpenFOAM
This chapter provides some information to help understand how OpenFOAM applications
and libraries are compiled. It provides some background knowledge of C++, the base
language of OpenFOAM. Henry Weller chose C++ as the main programming language
of OpenFOAM when he created it in the late 1980s.

The idea was to use object-oriented programming to express abstract concepts effi-
ciently, just as verbal language and mathematics can do. For example, in fluid flow, we
use the term “velocity field”, which has meaning without any reference to the nature
of the flow or any specific velocity data. The term encapsulates the idea of movement
with direction and magnitude and relates to other physical properties. In mathematics,



U-64 Applications and libraries

“velocity field” can be replaced by a single symbol, e.g. U, and other symbols express
operations and functions, e.g. “the field of velocity magnitude” by |U|.

CFD deals with partial differential equations in 3 dimensions of space and time. The
equations contain: fields of scalars, vectors and tensors; tensor algebra; tensor calculus;
and, dimensional units. The solution to these equations involves discretisation procedures,
matrices, solvers, and solution algorithms.

Rather than program CFD in terms of intrinsic entities known to a computer, e.g.
bits, bytes, integers, floating point numbers, OpenFOAM provides classes that define the
entities encountered in CFD. For example, a velocity field can be defined by a vectorField
class, allowing a programmer to create an instance, or object, of that class. The object can
be created with the name U to mimic the symbol used in mathematics. Associated func-
tions can be created with names which also try to emulate the simplicity of mathematics,
e.g. mag(U) can represent |U|.

The class structure concentrates code development to contained regions of the code,
i.e. the classes themselves, thereby making the code easier to manage. New classes can be
derived or inherit properties from other classes, e.g. the vectorField can be derived from
a vector class and a Field class. C++ provides the mechanism of template classes such
that the template class Field<Type> can represent a field of any <Type>, e.g.scalar, vector,
tensor. The general features of the template class are passed on to any class created from
the template. Templating and inheritance reduce duplication of code and create class
hierarchies that impose an overall structure on the code.

A theme of the OpenFOAM design is that it has a syntax that closely resembles the
partial differential equations being solved. For example the equation

∂ρU
∂t

+∇ •ϕU−∇ •µ∇U = −∇p

is represented by the code

solve
(

fvm::ddt(rho, U)
+ fvm::div(phi, U)
- fvm::laplacian(mu, U)

==
- fvc::grad(p)

);

The equation syntax is most evident in the code for solvers, both the modules and
solver applications. Users do not need a deep knowledge of C++ programming to interpret
the equations written in a solver. Instead, an understanding of the underlying equations,
models and solution method and algorithms is perhaps more helpful, which can be found
in Notes on Computational Fluid Dynamics: General Principles.

It does help to have a rudimentary understanding of the the principles behind object-
orientation and classes, and to have a basic knowledge of some C++ code syntax. To
program in OpenFOAM, there is often little need for a user to immerse themselves in
the code of any of the OpenFOAM classes. The essence of object-orientation is that the
user should not have to go through the code of each class they use; merely the knowledge
of the class’ existence and its functionality are sufficient to use the class. A description
of each class and its functions is supplied with the OpenFOAM distribution in HTML
documentation generated with Doxygen at https://cpp.openfoam.org
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3.2 Compiling applications and libraries
Compilation is an integral part of code development that requires careful management
since every piece of code requires its own set instructions to access dependent components
of the OpenFOAM library. In Linux systems there are various tools to help automate the
management process, starting with the standard make utility. OpenFOAM uses its own
wmake compilation script that is based on make. It is specifically designed for the large
number of individual components that are compiled separately in OpenFOAM (approxi-
mately 150 applications and 150 libraries).

To understand the compilation process, we first need to explain certain aspects of
C++ and its file structure, shown schematically in Figure 3.1. A class is defined through
a set of instructions such as object construction, data storage and class member functions.
The file that defines these functions — the class definition — takes a .C extension, e.g.
a class nc would be written in the file nc.C. This file can be compiled independently of
other code into a binary executable library file known as a shared object library with the
.so file extension, i.e.nc.so. When compiling a piece of code, say newApp.C, that uses the
nc class, nc.C need not be recompiled, rather newApp.C calls the nc.so library at runtime.
This is known as dynamic linking.

int main()

...

...
return(0);

{

}

nc.so
Library

option-I#include "nc.H"

Main code

Definition...

Compiled

nc.H

nc.C
#include "nc.H"

nc class

Declaration...

Compiled

Executable

Header file

Linked
option-l

newApp.C

newApp

Figure 3.1: Header files, source files, compilation and linking

3.2.1 Header .H files
As a means of checking errors, the piece of code being compiled must know that the classes
it uses and the operations they perform actually exist. Therefore each class requires a
class declaration, contained in a header file with a .H file extension, e.g. nc.H, that includes
the names of the class and its functions. This file is included at the beginning of any piece
of code using the class, using the #include directive described below, including the class
declaration code itself. Any piece of .C code can resource any number of classes and
must begin by including all the .H files required to declare these classes. Those classes in
turn can resource other classes and so also begin by including the relevant .H files. By
searching recursively down the class hierarchy we can produce a complete list of header
files for all the classes on which the top level .C code ultimately depends; these .H files are
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known as the dependencies. With a dependency list, a compiler can check whether the
source files have been updated since their last compilation and selectively compile only
those that need to be.

Header files are included in the code using the #include directive, e.g.

#include "otherHeader.H";

This causes the compiler to suspend reading from the current file, to read the included file.
This mechanism allows any self-contained piece of code to be put into a header file and
included at the relevant location in the main code in order to improve code readability.
For example, in most OpenFOAM applications the code for creating fields and reading
field input data is included in a file createFields.H which is called at the beginning of the
code. In this way, header files are not solely used as class declarations.

It is wmake that performs the task of maintaining file dependency lists amongst other
functions listed below.

• Automatic generation and maintenance of file dependency lists, i.e. lists of files
which are included in the source files and hence on which they depend.

• Multi-platform compilation and linkage, handled through appropriate directory
structure.

• Multi-language compilation and linkage, e.g. C, C++, Java.

• Multi-option compilation and linkage, e.g. debug, optimised, parallel and profiling.

• Support for source code generation programs, e.g. lex, yacc, IDL, MOC.

• Simple syntax for source file lists.

• Automatic creation of source file lists for new codes.

• Simple handling of multiple shared or static libraries.

3.2.2 Compiling with wmake
OpenFOAM applications are organised using a standard convention that the source code
of each application is placed in a directory whose name is that of the application. The
top level source file then takes the application name with the .C extension. For example,
the source code for an application called newApp would reside is a directory newApp and
the top level file would be newApp.C as shown in Figure 3.2. wmake then requires the
directory must contain a Make subdirectory containing 2 files, options and files, that are
described in the following sections.

3.2.3 Including headers
The compiler searches for the included header files in the following order, specified with
the -I option in wmake:

1. the $WM_PROJECT_DIR/src/OpenFOAM/lnInclude directory;

2. a local lnInclude directory, i.e.newApp/lnInclude;
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newApp

newApp.C

otherHeader.H

Make

files

options

Figure 3.2: Directory structure for an application

3. the local directory, i.e.newApp;

4. platform dependent paths set in files in the $WM_PROJECT_DIR/wmake/rules di-
rectory, e.g./usr/include/X11;

5. other directories specified explicitly in the Make/options file with the -I option.

The Make/options file contains the full directory paths to locate header files using the
syntax:

EXE_INC = \
-I<directoryPath1> \
-I<directoryPath2> \
... \
-I<directoryPathN>

Notice first that the directory names are preceded by the -I flag and that the syntax uses
the \ to continue the EXE_INC across several lines, with no \ after the final entry.

3.2.4 Linking to libraries
The compiler links to shared object library files in the following directory paths, specified
with the -L option in wmake:

1. the $FOAM_LIBBIN directory;

2. platform dependent paths set in files in the $WM_DIR/rules directory, e.g.$(MPI_-
ARCH_PATH)/lib;

3. other directories specified in the Make/options file.

The actual library files to be linked must be specified using the -l option and removing
the lib prefix and .so extension from the library file name, e.g. libnew.so is included with
the flag -lnew. By default, wmake loads the following libraries:

1. the libOpenFOAM.so library from the $FOAM_LIBBIN directory;

2. platform dependent libraries specified in set in files in the $WM_DIR/rules directory,
e.g. libm.so and libdl.so;
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3. other libraries specified in the Make/options file.

TheMake/options file contains the full directory paths and library names using the syntax:

EXE_LIBS = \
-L<libraryPath> \
-l<library1> \
-l<library2> \
... \
-l<libraryN>

To summarise: the directory paths are preceded by the -L flag, the library names are
preceded by the -l flag.

3.2.5 Source files to be compiled
The compiler requires a list of .C source files that must be compiled. The list must contain
the main .C file but also any other source files that are created for the specific application
but are not included in a class library. For example, users may create a new class or
some new functionality to an existing class for a particular application. The full list of
.C source files must be included in the Make/files file. For many applications the list only
includes the name of the main .C file, e.g. newApp.C in the case of our earlier example.

The Make/files file also includes a full path and name of the compiled executable,
specified by the EXE = syntax. Standard convention stipulates the name is that of the
application, i.e.newApp in our example. The OpenFOAM release offers two useful choices
for path: standard release applications are stored in $FOAM_APPBIN; applications de-
veloped by the user are stored in $FOAM_USER_APPBIN.

If the user is developing their own applications, we recommend they create an applica-
tions subdirectory in their $WM_PROJECT_USER_DIR directory containing the source
code for personal OpenFOAM applications. As with standard applications, the source
code for each OpenFOAM application should be stored within its own directory. The
only difference between a user application and one from the standard release is that the
Make/files file should specify that the user’s executables are written into their $FOAM_-
USER_APPBIN directory. The Make/files file for our example would appear as follows:

newApp.C

EXE = $(FOAM_USER_APPBIN)/newApp

3.2.6 Running wmake
The wmake script is generally executed by typing:

wmake <optionalDirectory>

The <optionalDirectory> is the directory path of the application that is being compiled.
Typically, wmake is executed from within the directory of the application being compiled,
in which case <optionalDirectory> can be omitted.
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3.2.7 wmake environment variables
For information, the general environment variable settings used by wmake are listed below.

• $WM_PROJECT_INST_DIR: full path to the installation directory, e.g.$HOME/-
OpenFOAM.

• $WM_PROJECT: name of the project being compiled, i.e. OpenFOAM.

• $WM_PROJECT_VERSION: version of the project being compiled, i.e. 13.

• $WM_PROJECT_DIR: full path to the main directory of the OpenFOAM release,
e.g. $HOME/OpenFOAM/OpenFOAM-13.

• $WM_PROJECT_USER_DIR: full path to the equivalent directory for customised
developments in the user account, e.g. $HOME/OpenFOAM/${USER}-13.

• $WM_THIRD_PARTY_DIR: full path to the directory of ThirdParty software, e.g.
$HOME/OpenFOAM/ThirdParty-13.

The environment variable settings for the compilation with wmake are listed below.

• $WM_ARCH: machine architecture, e.g. linux, linux64, linuxArm64, linuxARM7,
linuxPPC64, linuxPPC64le.

• $WM_ARCH_OPTION: 32 or 64 bit architecture.

• $WM_DIR: full path of the wmake directory.

• $WM_LABEL_SIZE: 32 or 64 bit size for labels (integers).

• $WM_LABEL_OPTION: Int32 or Int64 compilation of labels.

• $WM_LINK_LANGUAGE: compiler used to link libraries and executables c++.

• $WM_MPLIB: parallel communications library, SYSTEMOPENMPI = system version of
openMPI, alternatives include OPENMPI, SYSTEMMPI, MPICH, MPICH-GM, HPMPI, MPI,
QSMPI, INTELMPI and SGIMPI.

• $WM_OPTIONS, e.g. linux64GccDPInt32Opt, formed by combining $WM_ARCH,
$WM_COMPILER, $WM_PRECISION_OPTION, $WM_LABEL_OPTION, and $WM-
_COMPILE_OPTION.

• $WM_PRECISION_OPTION: floating point precision of the compiled binares, SP =
single precision, DP = double precision.

The environment variable settings relating to the choice of compiler and options withwmake
are listed below.

• $WM_CC: choice of C compiler, gcc.

• $WM_CFLAGS: extra flags to the C compiler, e.g. -m64 -fPIC.

• $WM_CXX: choice of C++ compiler, g++.

• $WM_CXXFLAGS: extra flags to the C++ compiler, e.g. -m64 -fPIC -std=c++0x.
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• $WM_COMPILER: compiler being used, e.g. Gcc = gcc, Clang = LLVM Clang

• $WM_COMPILE_OPTION: compilation option, Debug = debugging, Opt = opti-
mised.

• $WM_COMPILER_LIB_ARCH: compiler library architecture, e.g. 64.

• $WM_COMPILER_TYPE: choice of compiler, system, or ThirdParty, i.e. compiled
in ThirdParty directory.

• $WM_LDFLAGS: extra flags for the linker, e.g. -m64.

• $WM_LINK_LANGUAGE: linker language, e.g. c++.

• $WM_OSTYPE: Operating system, POSIX.

3.2.8 Removing dependency lists: wclean
When it is run, wmake builds a dependency list file with a .dep file extension, e.g. newApp-
.C.dep in our example, in a $WM_OPTIONS sub-directory of the Make directory, e.g.
Make/linuxGccDPInt64Opt. If the user wishes to remove these files, e.g. after making code
changes, the user can run the wclean script by typing:

wclean <optionalDirectory>

Again, the <optionalDirectory> is a path to the directory of the application that is
being compiled. Typically, wclean is executed from within the directory of the application,
in which case the path can be omitted.

3.2.9 Compiling libraries
When compiling a library, there are 2 critical differences in the configuration of the file
in the Make directory:

• in the files file, EXE = is replaced by LIB = and the target directory for the compiled
entity changes from $FOAM_APPBIN to $FOAM_LIBBIN (and an equivalent $FOAM_-
USER_LIBBIN directory);

• in the options file, EXE_LIBS = is replaced by LIB_LIBS = to indicate libraries linked
to library being compiled.

When wmake is executed it additionally creates a directory named lnInclude that contains
soft links to all the files in the library. The lnInclude directory is deleted by the wclean
script when cleaning library source code.

3.2.10 Compilation example: the foamRun application
The source code for application foamRun is in the $FOAM_SOLVERS/foamRun directory
and the top level source file is named foamRun.C. The foamRun.C source code is:
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1 /*---------------------------------------------------------------------------*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration | Website: https://openfoam.org
5 \\ / A nd | Copyright (C) 2022-2025 OpenFOAM Foundation
6 \\/ M anipulation |
7 -------------------------------------------------------------------------------
8 License
9 This file is part of OpenFOAM.

10
11 OpenFOAM is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15
16 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23
24 Application
25 foamRun
26
27 Description
28 Loads and executes an OpenFOAM solver module either specified by the
29 optional \c solver entry in the \c controlDict or as a command-line
30 argument.
31
32 Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
33 pseudo-transient and steady simulations.
34
35 Usage
36 \b foamRun [OPTION]
37
38 - \par -solver <name>
39 Solver name
40
41 - \par -libs '(\"lib1.so\" ... \"libN.so\")'
42 Specify the additional libraries loaded
43
44 Example usage:
45 - To run a \c rhoPimpleFoam case by specifying the solver on the
46 command line:
47 \verbatim
48 foamRun -solver fluid
49 \endverbatim
50
51 - To update and run a \c rhoPimpleFoam case add the following entry to
52 the controlDict:
53 \verbatim
54 solver fluid;
55 \endverbatim
56 then execute \c foamRun
57
58 \*---------------------------------------------------------------------------*/
59
60 #include "argList.H"
61 #include "solver.H"
62 #include "pimpleSingleRegionControl.H"
63 #include "setDeltaT.H"
64
65 using namespace Foam;
66
67 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
68
69 int main(int argc, char *argv[])
70 {
71 argList::addOption
72 (
73 "solver",
74 "name",
75 "Solver name"
76 );
77
78 #include "setRootCase.H"
79 #include "createTime.H"
80
81 // Read the solverName from the optional solver entry in controlDict
82 word solverName
83 (
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84 runTime.controlDict().lookupOrDefault("solver", word::null)
85 );
86
87 // Optionally reset the solver name from the -solver command-line argument
88 args.optionReadIfPresent("solver", solverName);
89
90 // Check the solverName has been set
91 if (solverName == word::null)
92 {
93 args.printUsage();
94
95 FatalErrorIn(args.executable())
96 << "solver not specified in the controlDict or on the command-line"
97 << exit(FatalError);
98 }
99 else

100 {
101 // Load the solver library
102 solver::load(solverName);
103 }
104
105 // Create the default single region mesh
106 #include "createMesh.H"
107
108 // Instantiate the selected solver
109 autoPtr<solver> solverPtr(solver::New(solverName, mesh));
110 solver& solver = solverPtr();
111
112 // Create the outer PIMPLE loop and control structure
113 pimpleSingleRegionControl pimple(solver.pimple);
114
115 // Set the initial time-step
116 setDeltaT(runTime, solver);
117
118 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
119
120 Info<< nl << "Starting time loop\n" << endl;
121
122 while (pimple.run(runTime))
123 {
124 solver.preSolve();
125
126 // Adjust the time-step according to the solver maxDeltaT
127 adjustDeltaT(runTime, solver);
128
129 runTime++;
130
131 Info<< "Time = " << runTime.userTimeName() << nl << endl;
132
133 // PIMPLE corrector loop
134 while (pimple.loop())
135 {
136 if (solver.pimple.flow())
137 {
138 solver.moveMesh();
139 solver.motionCorrector();
140 }
141
142 if (solver.pimple.models())
143 {
144 solver.fvModels().correct();
145 }
146
147 solver.prePredictor();
148
149 if (solver.pimple.predictTransport())
150 {
151 if (solver.pimple.flow())
152 {
153 solver.momentumTransportPredictor();
154 }
155
156 if (solver.pimple.thermophysics())
157 {
158 solver.thermophysicalTransportPredictor();
159 }
160 }
161
162 if (solver.pimple.flow())
163 {
164 solver.momentumPredictor();
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165 }
166
167 if (solver.pimple.thermophysics())
168 {
169 solver.thermophysicalPredictor();
170 }
171
172 if (solver.pimple.flow())
173 {
174 solver.pressureCorrector();
175 }
176
177 if (solver.pimple.correctTransport())
178 {
179 if (solver.pimple.flow())
180 {
181 solver.momentumTransportCorrector();
182 }
183
184 if (solver.pimple.thermophysics())
185 {
186 solver.thermophysicalTransportCorrector();
187 }
188 }
189 }
190
191 solver.postSolve();
192
193 runTime.write();
194
195 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
196 << " ClockTime = " << runTime.elapsedClockTime() << " s"
197 << nl << endl;
198 }
199
200 Info<< "End\n" << endl;
201
202 return 0;
203 }
204
205
206 // ************************************************************************* //

The code begins with a description of the application contained within comments over
1 line (//) and multiple lines (/*...*/). Following that, the code contains several #
include statements, e.g. # include "argList.H", which causes the compiler to suspend
reading from the current file, foamRun.C to read the argList.H file.

foamRun uses the finite volume numerics library and therefore requires the necessary
header files, specified by the EXE_INC = -I... option, and links to the libraries with the
EXE_LIBS = -l... option. The Make/options therefore contains the following:

1 EXE_INC = \
2 -I$(LIB_SRC)/finiteVolume/lnInclude
3
4 EXE_LIBS = \
5 -lfiniteVolume

foamRun contains the foamRun.C source and the executable is written to the $FOAM_-
APPBIN directory. The application uses functions to initialise and adjust the time step,
defined in the setDeltaT.C file. The Make/files therefore contains:

1 setDeltaT.C
2 foamRun.C
3
4 EXE = $(FOAM_APPBIN)/foamRun

Following the recommendations of section 3.2.5, the user can compile a separate version of
foamRun into their local $FOAM_USER_DIR directory as follows. First, the user should
copy the foamRun source code to a local directory, e.g. $FOAM_RUN.

cd $FOAM_RUN
cp -r $FOAM_SOLVERS/foamRun .
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They should then go into the foamRun directory.

cd foamRun

and edit the Make/files file as follows:

1 foamRun.C
2
3 EXE = $(FOAM_USER_APPBIN)/foamRun

Finally, they should run the wmake script.

wmake

The code should compile and produce a message similar to the following

Making dependency list for source file foamRun.C
g++ -std=c++14 -m64...
...
-o ... platforms/linux64GccDPInt32Opt/bin/foamRun

If the user tries recompiling without making any changes to the code file, nothing will
happen. The user can compile the application from scratch by removing the dependency
list with

wclean

and running wmake.

3.2.11 Debug messaging and optimisation switches
OpenFOAM provides a system of messaging that is written during runtime, most of
which are to help debugging problems encountered during running of a OpenFOAM case.
The switches are listed in the $WM_PROJECT_DIR/etc/controlDict file; should the user
wish to change the settings they should make a copy to their $HOME directory, i.e.

$HOME/.OpenFOAM/13/controlDict file (see section 4.3 for more information). The list
of possible switches is extensive, relating to a class or range of functionality, and can be
switched on by their inclusion in the controlDict file, and by being set to 1. For example,
OpenFOAM can perform the checking of dimensional units in all calculations by setting
the dimensionSet switch to 1.

A small number of switches control messaging at three levels, 0, 1 and 2, most notably
the overall level switch and lduMatrix which provides messaging for solver convergence
during a run.

There are some switches that control certain operational and optimisation issues. Of
particular importance is fileModificationSkew. OpenFOAM scans the write time of
data files to check for modification. When running over a NFS with some disparity in the
clock settings on different machines, field data files appear to be modified ahead of time.
This can cause a problem if OpenFOAM views the files as newly modified and attempting
to re-read this data. The fileModificationSkew keyword is the time in seconds that
OpenFOAM will subtract from the file write time when assessing whether the file has
been newly modified. The main optimisation switches are listed below:
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• fileModificationSkew: a time in seconds that should be set higher than the max-
imum delay in NFS updates and clock difference for running OpenFOAM over a
NFS.

• fileModificationChecking: method of checking whether files have been mod-
ified during a simulation, either reading the timeStamp or using inotify; ver-
sions that read only master-node data also exist, termed timeStampMaster and
inotifyMaster.

• commsType: parallel communications type, nonBlocking, scheduled or blocking.

• floatTransfer: if 1, will compact numbers to float precision before transfer;
default is 0.

• nProcsSimpleSum: optimises the global sum for parallel processing, by setting the
number of processors above which a hierarchical sum is performed rather than a
linear sum.

3.2.12 Dynamic linking at run-time
The situation may arise that a user creates a new library, say new1, and wishes the
features within that library to be available across a range of applications. For example,
the user may create a new boundary condition, compiled into new1, that would need to be
recognised by a range of solver applications, pre- and post-processing utilities, mesh tools,
etc. Under normal circumstances, the user would need to recompile every application with
the new1 linked to it.

Instead there is a simple mechanism to link one or more shared object libraries dy-
namically at run-time in OpenFOAM. The use can simply add the optional keyword entry
libs to the controlDict file for a case and enter the full names of the libraries within a list
(as quoted string entries). For example, if a user wished to link the libraries new1 and
new2 at run-time, they would simply need to add the following to the case controlDict file:

libs
(

"libnew1.so"
"libnew2.so"

);

3.3 Running applications
Each application is designed to be executed from a terminal command line, typically
reading and writing a set of data files associated with a particular case. The data files
for a case are stored in a directory named after the case as described in section 4.1; the
directory name with full path is here given the generic name <caseDir>.

For any application, the form of the command line entry for any can be found by
simply entering the application name at the command line with the -help option, e.g.
typing

foamRun -help
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returns the usage

Usage: foamRun [OPTIONS]
options:

-case <dir> specify alternate case directory, default is cwd
-fileHandler <handler>

override the fileHandler
-hostRoots <((host1 dir1) .. (hostN dirN))>

slave root directories for distributed running
-libs '("lib1.so" ... "libN.so")'

pre-load libraries
-noFunctionObjects

do not execute functionObjects
-parallel run in parallel
-roots <(dir1 .. dirN)>

slave root directories for distributed running
-solver <name> Solver name
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage

If the application is executed from within a case directory, it will operate on that case.
Alternatively, the -case <caseDir> option allows the case to be specified directly so
that the application can be executed from anywhere in the filing system.

Like any UNIX/Linux executable, applications can be run as a background process,
i.e. one which does not have to be completed before the user can give the shell additional
commands. If the user wished to run the foamRun example as a background process and
output the case progress to a log file, they could enter:

foamRun > log &

3.4 Running applications in parallel
This section describes how to run OpenFOAM in parallel on distributed processors. The
method of parallel computing used by OpenFOAM is known as domain decomposition, in
which the geometry and associated fields are broken into pieces and allocated to separate
processors for solution. The process of parallel computation involves: decomposition of
mesh and fields; running the application in parallel; and, post-processing the decomposed
case as described in the following sections. The parallel running uses the public domain
openMPI implementation of the standard message passing interface (MPI) by default,
although other libraries can be used.

3.4.1 Decomposition of mesh and initial field data
The mesh and fields are decomposed using the decomposePar utility. The underlying aim
is to break up the domain with minimal effort but in such a way to guarantee an economic
solution. The geometry and fields are broken up according to a set of parameters specified
in a dictionary named decomposeParDict that must be located in the system directory of

OpenFOAM-13



3.4 Running applications in parallel U-77

the case of interest. An example decomposeParDict dictionary can be copied into a case
system directory using the foamGet script.

foamGet decomposeParDict

The dictionary entries within it are reproduced below.
16 numberOfSubdomains 8;
17
18 /*
19 Main methods are:
20 1) Geometric: "simple"; "hierarchical", with ordered sorting, e.g. xyz, yxz
21 2) Scotch: "scotch", when running in serial; "ptscotch", running in parallel
22 */
23
24 method hierarchical;
25
26 simpleCoeffs
27 {
28 n (4 2 1); // total must match numberOfSubdomains
29 }
30
31 hierarchicalCoeffs
32 {
33 n (4 2 1); // total must match numberOfSubdomains
34 order xyz;
35 }
36
37
38 // ************************************************************************* //

The user has a choice of four methods of decomposition, specified by the method keyword
as described below.

simple Simple geometric decomposition in which the domain is split into pieces by di-
rection, e.g. 2 pieces in the x direction, 1 in y etc.

hierarchical Hierarchical geometric decomposition which is the same as simple except
the user specifies the order in which the directional split is done, e.g. first in the
y-direction, then the x-direction etc.

scotch Scotch decomposition which requires no geometric input from the user and at-
tempts to minimise the number of processor boundaries. The user can specify a
weighting for the decomposition between processors, through an optional process-
orWeights keyword which can be useful on machines with differing performance
between processors. There is also an optional keyword entry strategy that con-
trols the decomposition strategy through a complex string supplied to Scotch. For
more information, see the source code file: $FOAM_SRC/parallel/decompose/scotch-
Decomp/scotchDecomp.C

For each method there are a set of coefficients specified in a sub-dictionary of decom-
positionDict, named <method>Coeffs as shown in the dictionary listing. The full set of
keyword entries in the decomposeParDict dictionary are explained below:

• numberOfSubdomains: total number of subdomains N .

• method: method of decomposition, simple, hierarchical, scotch.

• n: for simple and hierarchical, number of subdomains in x, y, z (nx ny nz)

• order: order of hierarchical decomposition, xyz/xzy/yxz. . .
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• processorWeights option for scotch: list of weighting factors (<wt1>...<wtN>)
for allocation of cells to processors; <wt1> is the weighting factor for processor 1,
etc.; weights are normalised so can take any range of values.

The decomposePar utility is executed in the normal manner by typing

decomposePar

3.4.2 File input/output in parallel
Using standard file input/output completion, a set of subdirectories will have been cre-
ated, one for each processor, in the case directory. The directories are named processorN
where N = 0, 1, . . . represents a processor number and contains a time directory, contain-
ing the decomposed field descriptions, and a constant/polyMesh directory containing the
decomposed mesh description.

While this file structure is well-organised, for large parallel cases, it generates a large
number of files. In very large simulations, users can experience problems including hitting
limits on the number of open files imposed by the operating system.

As an alternative, the collated file format was introduced in OpenFOAM in which
the data for each decomposed field (and mesh) is collated into a single file that is written
(and read) on the master processor. The files are stored in a single directory named
processors.

The file writing can be threaded allowing the simulation to continue running while the
data is being written to file — see below for details. NFS (Network File System) is not
needed when using the collated format and, additionally, there is a masterUncollated
option to write data with the original uncollated format without NFS.

The controls for the file handling are in the OptimisationSwitches of the global
etc/controlDict file:

OptimisationSwitches
{

...

//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;

//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;

//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;

}

The fileHandler can be set for a specific simulation by:

• over-riding the global OptimisationSwitches {fileHandler ...;} in the case
controlDict file;

• using the -fileHandler command line argument to the solver;

• setting the $FOAM_FILEHANDLER environment variable.
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A foamFormatConvert utility allows users to convert files between the collated and
uncollated formats, e.g.

mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated

An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/fluid/iglooWithFridges

Collated file handling runs faster with threading, especially on large cases. But it
requires threading support to be enabled in the underlying MPI. Without it, the simu-
lation will “hang” or crash. For openMPI, threading support is not set by default prior
to version 2, but is generally switched on from version 2 onwards. The user can check
whether openMPI is compiled with threading support by the following command:

ompi_info -c | grep -oE "MPI_THREAD_MULTIPLE[^,]*"

When using the collated file handling, memory is allocated for the data in the thread.
maxThreadFileBufferSize sets the maximum size of memory that is allocated in bytes.
If the data exceeds this size, the write does not use threading.

Note: if threading is not enabled in the MPI, it must be disabled for collated file
handling by setting in the global etc/controlDict file:

maxThreadFileBufferSize 0;

When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node. maxMasterFileBufferSize
sets the maximum size of the buffer. If the data exceeds this size, the system uses sched-
uled communication.

3.4.3 Running a decomposed case
A decomposed OpenFOAM case is run in parallel using the openMPI implementation
of MPI. openMPI can be run on a local multiprocessor machine very simply but when
running on machines across a network, a file must be created that contains the host
names of the machines. The file can be given any name and located at any path. In the
following description we shall refer to such a file by the generic name, including full path,
<machines>.

The <machines> file contains the names of the machines listed one machine per line.
The names must correspond to a fully resolved hostname in the /etc/hosts file of the
machine on which the openMPI is run. The list must contain the name of the machine
running the openMPI. Where a machine node contains more than one processor, the node
name may be followed by the entry cpu=n where n is the number of processors openMPI
should run on that node.

For example, let us imagine a user wishes to run openMPI from machine aaa on the
following machines: aaa; bbb, which has 2 processors; and ccc. The <machines> would
contain:

aaa
bbb cpu=2
ccc
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An application is run in parallel using mpirun.

mpirun --hostfile <machines> -np <nProcs>
<foamExec> <otherArgs> -parallel > log &

where: <nProcs> is the number of processors; <foamExec> is the executable, e.g.foamRun;
and, the output is redirected to a file named log. For example, if foamRun is run on 4
nodes, specified in a file named machines, then the following command should be executed:

mpirun --hostfile machines -np 4 foamRun -parallel > log &

3.4.4 Distributing data across several disks
Data files may need to be distributed if, for example, if only local disks are used in
order to improve performance. In this case, the user may find that the root path to the
case directory may differ between machines. The paths must then be specified in the
decomposeParDict dictionary using distributed and roots keywords. The distributed
entry should read

distributed yes;

and the roots entry is a list of root paths, <root0>, <root1>, . . . , for each node

roots
<nRoots>
(

"<root0>"
"<root1>"
...

);

where <nRoots> is the number of roots.
Each of the processorN directories should be placed in the case directory at each of

the root paths specified in the decomposeParDict dictionary. The system directory and
files within the constant directory must also be present in each case directory. Note: the
files in the constant directory are needed, but the polyMesh directory is not.

3.4.5 Post-processing parallel processed cases
When post-processing cases that have been run in parallel the user has two options:

• reconstruction of the mesh and field data to recreate the complete domain and fields,
which can be post-processed as normal;

• post-processing each segment of decomposed domain individually.

After a case has been run in parallel, it can be reconstructed for post-processing.
The case is reconstructed by merging the sets of time directories from each processorN
directory into a single set of time directories. The reconstructPar utility performs such a
reconstruction by executing the command:
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reconstructPar

The user may post-process decomposed cases using the paraFoam post-processor, de-
scribed in section 7.1. The whole simulation can be post-processed by reconstructing the
case or alternatively it is possible to post-process a segment of the decomposed domain
individually by simply treating the individual processor directory as a case in its own
right.

3.5 Solver modules
From OpenFOAM version 11, application solvers, e.g. simpleFoam have been largely re-
placed by the generic foamRun solver which loads a solver module, e.g. incompressibleFluid
that defines the flow solution. Solver modules are located in the $FOAM_MODULES
directory. The current solver modules distributed with OpenFOAM are listed below.

3.5.1 Single-phase modules
fluid Solver module for steady or transient turbulent flow of compressible fluids with

heat-transfer for HVAC and similar applications, with optional mesh motion and
change.

incompressibleDenseParticleFluid Solver module for transient flow of incompressible iso-
thermal fluids coupled with particle clouds including the effect of the volume fraction
of particles on the continuous phase, with optional mesh motion and change.

incompressibleFluid Solver module for steady or transient turbulent flow of incompressible
isothermal fluids with optional mesh motion and change.

multicomponentFluid Solver module for steady or transient turbulent flow of compressible
multicomponent fluids with optional mesh motion and change.

shockFluid Solver module for density-based solution of compressible flow

XiFluid Solver module for compressible premixed/partially-premixed combustion with
turbulence modelling.

3.5.2 Multiphase/VoF flow modules
compressibleMultiphaseVoF Solver module for the solution of multiple compressible, iso-

thermal immiscible fluids using a VOF (volume of fluid) phase-fraction based in-
terface capturing approach, with optional mesh motion and mesh topology changes
including adaptive re-meshing.

compressibleVoF Solver module for for 2 compressible, non-isothermal immiscible flu-
ids using a VOF (volume of fluid) phase-fraction based interface capturing ap-
proach, with optional mesh motion and mesh topology changes including adaptive
re-meshing.

incompressibleDriftFlux Solver module for 2 incompressible fluids using the mixture ap-
proach with the drift-flux approximation for relative motion of the phases, with
optional mesh motion and mesh topology changes including adaptive re-meshing.
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incompressibleMultiphaseVoF Solver module for the solution of multiple incompressible,
isothermal immiscible fluids using a VOF (volume of fluid) phase-fraction based
interface capturing approach, with optional mesh motion and mesh topology changes
including adaptive re-meshing.

incompressibleVoF Solver module for for 2 incompressible, isothermal immiscible fluids us-
ing a VOF (volume of fluid) phase-fraction based interface capturing approach, with
optional mesh motion and mesh topology changes including adaptive re-meshing.

isothermalFluid Solver module for steady or transient turbulent flow of compressible iso-
thermal fluids with optional mesh motion and change.

multiphaseEuler Solver module for a system of any number of compressible fluid phases
with a common pressure, but otherwise separate properties. The type of phase
model is run time selectable and can optionally represent multiple species and in-
phase reactions. The phase system is also run time selectable and can optionally
represent different types of momentum, heat and mass transfer.

3.5.3 Solid modules
solid Solver module for thermal transport in solid domains and regions for conjugate

heat transfer, HVAC and similar applications, with optional mesh motion and mesh
topology changes.

solidDisplacement Solver module for steady or transient segregated finite-volume solution
of linear-elastic, small-strain deformation of a solid body, with optional thermal
diffusion and thermal stresses.

3.5.4 Film modules
isothermalFilm Solver module for flow of compressible isothermal liquid films

film Solver module for flow of compressible liquid films

3.5.5 Utility modules
functions Solver module to execute the functionObjects for a specified

movingMesh Solver module to move the mesh.

3.5.6 Base classes for solver modules
fluidSolver Base solver module for fluid solvers.

twoPhaseSolver Solver module base-class for for 2 immiscible fluids, with optional mesh
motion and mesh topology changes including adaptive re-meshing.

twoPhaseVoFSolver Solver module base-class for for 2 immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach, with optional
mesh motion and mesh topology changes including adaptive re-meshing.
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VoFSolver Base solver module base-class for the solution of immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach, with optional
mesh motion and mesh topology changes including adaptive re-meshing.

multiphaseVoFSolver Base solver module for the solution of multiple immiscible fluids us-
ing a VOF (volume of fluid) phase-fraction based interface capturing approach, with
optional mesh motion and mesh topology changes including adaptive re-meshing.

3.6 Standard solvers
With the introduction of solver modules in OpenFOAM v11, the number of solver appli-
cations has much reduced. The applications which are relevant, including foamRun and
foamMultiRun, are located in the $FOAM_SOLVERS directory, reached quickly by typing
sol at the command line. These solver applications are listed in the following section.

There are also some legacy solver applications, which either have not been replaced
yet by new solver modules or are included for teaching purposes. They are provided in
the $FOAM_APP/legacy directory are listed in the subsequent section below.

3.6.1 Main solver applications
foamRun Loads and executes an OpenFOAM solver module either specified by the op-

tional solver entry in the controlDict or as a command-line argument.

foamMultiRun Loads and executes an OpenFOAM solver modules for each region of a
multiregion simulation e.g. for conjugate heat transfer.

boundaryFoam Steady-state solver for incompressible, 1D turbulent flow, typically to gen-
erate boundary layer conditions at an inlet, for use in a simulation.

chemFoam Solver for chemistry problems, designed for use on single cell cases to provide
comparison against other chemistry solvers, that uses a single cell mesh, and fields
created from the initial conditions.

potentialFoam Potential flow solver which solves for the velocity potential, to calculate
the flux-field, from which the velocity field is obtained by reconstructing the flux.

3.6.2 Legacy solver applications
electrostaticFoam Solver for electrostatics.

magneticFoam Solver for the magnetic field generated by permanent magnets.

mhdFoam Solver for magnetohydrodynamics (MHD): incompressible, laminar flow of a
conducting fluid under the influence of a magnetic field.

laplacianFoam Solves a simple Laplace equation, e.g. for thermal diffusion in a solid.

financialFoam Solves the Black-Scholes equation to price commodities.

dsmcFoam Direct simulation Monte Carlo (DSMC) solver for, transient, multi-species
flows.
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mdEquilibrationFoam Solver to equilibrate and/or precondition molecular dynamics sys-
tems.

mdFoam Molecular dynamics solver for fluid dynamics.

adjointShapeOptimizationFoam Steady-state solver for incompressible, turbulent flow of
non-Newtonian fluids with optimisation of duct shape by applying "blockage" in
regions causing pressure loss as estimated using an adjoint formulation.

icoFoam Transient solver for incompressible, laminar flow of Newtonian fluids.

shallowWaterFoam Transient solver for inviscid shallow-water equations with rotation.

porousSimpleFoam Steady-state solver for incompressible, turbulent flow with implicit or
explicit porosity treatment and support for multiple reference frames (MRF).

rhoPorousSimpleFoam Steady-state solver for turbulent flow of compressible fluids, with
implicit or explicit porosity treatment and optional sources.

PDRFoam Solver for compressible premixed/partially-premixed combustion with turbu-
lence modelling.

3.7 Standard utilities
The utilities with the OpenFOAM distribution are in the $FOAM_UTILITIES directory.
The names are reasonably descriptive, e.g. ideasToFoam converts mesh data from the
format written by I-DEAS to the OpenFOAM format. The descriptions of current utilities
distributed with OpenFOAM are given in the following sections.

3.7.1 Pre-processing
applyBoundaryLayer Apply a simplified boundary-layer model to the velocity and turbu-

lence fields based on the 1/7th power-law.

boxTurb Makes a box of turbulence which conforms to a given energy spectrum and is
divergence free.

changeDictionary Utility to change dictionary entries, e.g. can be used to change the
patch type in the field and polyMesh/boundary files.

createExternalCoupledPatchGeometry Application to generate the patch geometry (points
and faces) for use with the externalCoupled boundary condition.

dsmcInitialise Initialise a case for dsmcFoam by reading the initialisation dictionary system/-
dsmcInitialise.

engineSwirl Generates a swirling flow for engine calculations.

faceAgglomerate Agglomerate boundary faces using the pairPatchAgglomeration algo-
rithm. It writes a map from the fine to coarse grid.

foamSetupCHT Sets up a multi-region case using template files for material properties,
field and system files.
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mapFields Maps volume fields from one mesh to another, reading and interpolating all
fields present in the time directory of both cases.

mapFieldsPar Maps volume fields from one mesh to another, reading and interpolating all
fields present in the time directory of both cases. Parallel and non-parallel cases are
handled without the need to reconstruct them first.

mdInitialise Initialises fields for a molecular dynamics (MD) simulation.

setAtmBoundaryLayer Applies atmospheric boundary layer models to the entire domain
for case initialisation.

setFields Set values on a selected set of cells/patchfaces through a dictionary.

setWaves Applies wave models to the entire domain for case initialisation using level sets
for second-order accuracy.

snappyHexMeshConfig Preconfigures blockMeshDict, surfaceFeaturesDict and snappyHex-
MeshDict files based on the case surface geometry files.

viewFactorsGen View factors are calculated based on a face agglomeration array (final-
Agglom generated by faceAgglomerate utility).

3.7.2 Mesh generation
blockMesh A multi-block mesh generator.

extrudeMesh Extrude mesh from existing patch (by default outwards facing normals; op-
tional flips faces) or from patch read from file.

extrude2DMesh Takes 2D mesh (all faces 2 points only, no front and back faces) and
creates a 3D mesh by extruding with specified thickness.

extrudeToRegionMesh Extrude faceZones (internal or boundary faces) or faceSets (boun-
dary faces only) into a separate mesh (as a different region).

snappyHexMesh Automatic split hex mesher. Refines and snaps to surface.

zeroDimensionalMesh Creates a zero-dimensional mesh.

3.7.3 Mesh conversion
ansysToFoam Converts an ANSYS input mesh file, exported from I-DEAS, to OpenFOAM

format.

ccm26ToFoam Reads CCM files as written by Prostar/ccm using ccm 2.6

cfx4ToFoam Converts a CFX 4 mesh to OpenFOAM format.

datToFoam Reads in a datToFoam mesh file and outputs a points file. Used in conjunction
with blockMesh.

fluent3DMeshToFoam Converts a Fluent mesh to OpenFOAM format.
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fluentMeshToFoam Converts a Fluent mesh to OpenFOAM format including multiple
region and region boundary handling.

foamMeshToFluent Writes out the OpenFOAM mesh in Fluent mesh format.

foamToStarMesh Reads an OpenFOAM mesh and writes a pro-STAR (v4) bnd/cel/vrt
format.

foamToSurface Reads an OpenFOAMmesh and writes the boundaries in a surface format.

gambitToFoam Converts a GAMBIT mesh to OpenFOAM format.

gmshToFoam Reads .msh file as written by Gmsh.

ideasUnvToFoam I-Deas unv format mesh conversion.

kivaToFoam Converts a KIVA3v grid to OpenFOAM format.

mshToFoam Converts .msh file generated by the Adventure system.

netgenNeutralToFoam Converts neutral file format as written by Netgen v4.4.

plot3dToFoam Plot3d mesh (ascii/formatted format) converter.

sammToFoam Converts a Star-CD (v3) SAMM mesh to OpenFOAM format.

star3ToFoam Converts a Star-CD (v3) pro-STAR mesh into OpenFOAM format.

star4ToFoam Converts a Star-CD (v4) pro-STAR mesh into OpenFOAM format.

tetgenToFoam Converts .ele and .node and .face files, written by tetgen.

vtkUnstructuredToFoam Converts ascii .vtk (legacy format) file generated by vtk/paraview.

writeMeshObj For mesh debugging, writes mesh as three separate OBJ files for visualisa-
tion.

3.7.4 Mesh manipulation
autoPatch Divides external faces into patches based on (user supplied) feature angle.

checkMesh Checks validity of a mesh.

createBaffles Makes internal faces into boundary faces. Does not duplicate points.

createNonConformalCouples Utility to create non-conformal couples between non-coupled
patches.

createPatch Utility to create patches out of selected boundary faces. Faces come either
from existing patches or from a faceSet.

createZones Utility to generate zones by executing configured zoneGenerators.

deformedGeom Deforms a polyMesh using a displacement field U and a scaling factor
supplied as an argument.

flattenMesh Flattens the front and back planes of a 2D cartesian mesh.
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insideCells Picks up cells with cell centre ’inside’ of surface. Requires surface to be closed
and singly connected.

mergeBaffles Detects faces that share points (baffles) and merges them into internal faces.

mergeMeshes Merges two meshes.

mirrorMesh Mirrors a mesh around a given plane.

objToVTK Read obj line (not surface!) file and convert into vtk.

polyDualMesh Calculates the dual of a polyMesh. Adheres to all the feature and patch
edges.

refineMesh Utility to refine cells in multiple directions.

renumberMesh Renumbers the cell list in order to reduce the bandwidth, reading and
renumbering all fields from all the time directories.

reorderPatches Utility to reorder the patches of a case

singleCellMesh Reads all fields and maps them to a mesh with all internal faces removed
(singleCellFvMesh) which gets written to region singleCell.

splitBaffles Detects faces that share points (baffles) and duplicates the points to separate
them.

splitMeshRegions Splits mesh into multiple regions.

stitchMesh Stitches a mesh.

subsetMesh Selects a section of mesh based on a cellSet.

topoSet Operates on cellSets/faceSets/pointSets through a dictionary.

transformPoints Transforms the mesh points in the polyMesh directory according to the
translate, rotate and scale options.

zipUpMesh Reads in a mesh with hanging vertices and zips up the cells to guarantee that
all polyhedral cells of valid shape are closed.

3.7.5 Other mesh tools
collapseEdges Collapses short edges and combines edges that are in line.

combinePatchFaces Checks for multiple patch faces on same cell and combines them.
Multiple patch faces can result from e.g. removal of refined neighbouring cells,
leaving 4 exposed faces with same owner.

refinementLevel Tries to figure out what the refinement level is on refined Cartesian
meshes. Run BEFORE snapping.

refineWallLayer Utility to refine cells next to patches.

removeFaces Utility to remove faces (combines cells on both sides).

selectCells Select cells in relation to surface.

splitCells Utility to split cells with flat faces.
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3.7.6 Post-processing
engineCompRatio Calculate the geometric compression ratio. Note that if you have valves

and/or extra volumes it will not work, since it calculates the volume at BDC and
TCD.

foamPostProcess Execute the set of functionObjects specified in the selected dictionary
(which defaults to system/controlDict) or on the command-line for the selected set
of times on the selected set of fields.

noise Utility to perform noise analysis of pressure data using the noiseFFT library.

pdfPlot Generates a graph of a probability distribution function.

temporalInterpolate Interpolate fields between time-steps e.g. for animation.

3.7.7 Post-processing data converters
foamDataToFluent Translates OpenFOAM data to Fluent format.

foamToEnsight Translates OpenFOAM data to EnSight format.

foamToEnsightParts Translates OpenFOAM data to Ensight format. An Ensight part is
created for each cellZone and patch.

foamToGMV Translates foam output to GMV readable files.

foamToTetDualMesh Converts polyMesh results to tetDualMesh.

foamToVTK Legacy VTK file format writer.

smapToFoam Translates a STAR-CD SMAP data file into OpenFOAM field format.

3.7.8 Lagrangian post-processing
particleTracks Generates a VTK file of particle tracks for cases that were computed using

a tracked-parcel-type cloud.

steadyParticleTracks Generates a VTK file of particle tracks for cases that were computed
using a steady-state cloud NOTE: case must be re-constructed (if running in paral-
lel) before use

3.7.9 Surface mesh (e.g. OBJ/STL) tools
surfaceAdd Add two surfaces. Does geometric merge on points. Does not check for over-

lapping/intersecting triangles.

surfaceAutoPatch Patches surface according to feature angle. Like autoPatch.

surfaceBooleanFeatures Generates the extendedFeatureEdgeMesh for the interface between
a boolean operation on two surfaces. Assumes that the orientation of the surfaces
is correct.

surfaceCheck Checks geometric and topological quality of a surface.
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surfaceClean Removes baffles - collapses small edges, removing triangles. - converts sliver
triangles into split edges by projecting point onto base of triangle.

surfaceCoarsen Surface coarsening using bunnylod

surfaceConvert Converts from one surface mesh format to another.

surfaceFeatureConvert Convert between edgeMesh formats.

surfaceFeatures Identifies features in a surface geometry and writes them to file, based on
control parameters specified by the user.

surfaceFind Finds nearest face and vertex.

surfaceHookUp Find close open edges and stitches the surface along them

surfaceInertia Calculates the inertia tensor, principal axes and moments of a command
line specified triSurface. Inertia can either be of the solid body or of a thin shell.

surfaceLambdaMuSmooth Smooths a surface using lambda/mu smoothing.

surfaceMeshConvert Converts between surface formats with optional scaling or transfor-
mations (rotate/translate) on a coordinateSystem.

surfaceMeshExport Export from surfMesh to various third-party surface formats with
optional scaling or transformations (rotate/translate) on a coordinateSystem.

surfaceMeshImport Import from various third-party surface formats into surfMesh with
optional scaling or transformations (rotate/translate) on a coordinateSystem.

surfaceMeshInfo Miscellaneous information about surface meshes.

surfaceMeshTriangulate Extracts surface from a polyMesh. Depending on output surface
format triangulates faces.

surfaceOrient Set normal consistent with respect to a user provided ‘outside’ point. If the
-inside option is used the point is considered inside.

surfacePointMerge Merges points on surface if they are within absolute distance. Since
absolute distance use with care!

surfaceRedistributePar (Re)distribution of triSurface. Either takes an non-decomposed
surface or an already decomposed surface and redistributes it so that each processor
has all triangles that overlap its mesh.

surfaceRefineRedGreen Refine by splitting all three edges of triangle (‘red’ refinement).
Neighbouring triangles which are not marked for refinement get split in half (‘green’
refinement).

surfaceSplitByPatch Writes regions of triSurface to separate files.

surfaceSplitByTopology Strips any baffle parts of a surface. A baffle region is one which
is reached by walking from an open edge, and stopping when a multiply connected
edge is reached.
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surfaceSplitNonManifolds Takes multiply connected surface and tries to split surface at
multiply connected edges by duplicating points. Introduces concept of - borderEdge.
Edge with 4 faces connected to it. - borderPoint. Point connected to exactly 2
borderEdges. - borderLine. Connected list of borderEdges.

surfaceSubset A surface analysis tool which sub-sets the triSurface to choose only a
part of interest. Based on subsetMesh.

surfaceToPatch Reads surface and applies surface regioning to a mesh. Uses boundaryMesh
to do the hard work.

surfaceTransformPoints Transform (scale/rotate) a surface. Like transformPoints but
for surfaces.

3.7.10 Parallel processing
decomposePar Automatically decomposes a mesh and fields of a case for parallel execution

of OpenFOAM.

reconstructPar Reconstructs fields of a case that is decomposed for parallel execution of
OpenFOAM.

redistributePar Redistributes existing decomposed mesh and fields according to the current
settings in the decomposeParDict file.

3.7.11 Thermophysical-related utilities
adiabaticFlameT Calculates the adiabatic flame temperature for a given fuel over a range

of unburnt temperatures and equivalence ratios.

chemkinToFoam Converts CHEMKINIII thermodynamics and reaction data files into
OpenFOAM format.

equilibriumCO Calculates the equilibrium level of carbon monoxide.

equilibriumFlameT Calculates the equilibrium flame temperature for a given fuel and pres-
sure for a range of unburnt gas temperatures and equivalence ratios; the effects of
dissociation on O2, H2O and CO2 are included.

mixtureAdiabaticFlameT Calculates the adiabatic flame temperature for a given mixture
at a given temperature.

3.7.12 Miscellaneous utilities
foamDictionary Interrogates and manipulates dictionaries.

foamFormatConvert Converts all IOobjects associated with a case into the format specified
in the controlDict.

foamListTimes List times using timeSelector.

foamToC Run-time selection table of contents printing and interrogation.

patchSummary Writes fields and boundary condition info for each patch at each requested
time instance.
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Chapter 4

OpenFOAM cases

This chapter deals with the file structure and organisation of OpenFOAM cases. Normally,
a user would assign a name to a case, e.g. the tutorial case of aerodynamics of a motorbike
is simply named motorBike. This name becomes the name of a directory in which all the
case files and sub-directories are stored.

When running a simulation, a case directory can be located anywhere on a user’s
filing system. However, we recommend putting cases within a run subdirectory of the
user’s filing system, i.e.$HOME/OpenFOAM/${USER}-13 as described at the beginning
of chapter 2. The $FOAM_RUN environment variable is set to $HOME/OpenFOAM/-
${USER}-13/run by default and the user can quickly move to that directory by executing
a preset alias, run, at the command line.

The tutorial cases that accompany the OpenFOAM distribution provide useful exam-
ples of the case directory structures. The tutorials are located in the $FOAM_TUTORIALS
directory, reached quickly by executing the tut alias at the command line. Users can view
tutorial examples at their leisure while reading this chapter.

4.1 File structure of OpenFOAM cases
The basic directory structure of an OpenFOAM case, containing the minimum set of files
required to run an application, is shown in Figure 4.1 and described as follows:

constant directory that contains a full description of the case mesh in a subdirectory
polyMesh and files specifying properties and models for the application concerned,
e.g. physicalProperties and momentumTransport.

system directory for setting parameters associated with the solution procedure itself.
It contains at least the following three files: controlDict where run control param-
eters are set including start/end time, time step and parameters for data output;
fvSchemes where discretisation schemes used in the solution are selected; and, fv-
Solution where the equation solvers, tolerances and other algorithm controls are set
for the run.

‘time’ directories containing individual files of data for particular fields, e.g. velocity
and pressure. The data can be: either, initial values and boundary conditions
that the user must specify to define the problem; or, results written to file by
OpenFOAM. Fields must always be initialised, even when the solution does not
strictly require it, as in steady-state problems. The name of each time directory
is based on the simulated time at which the data is written and is described fully
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<case>

system

controlDict
fvSchemes

polyMesh

points

. . . Properties

constant
fvSolution

see section 4.4
see section 4.5
see section 4.6

see section 5.2
see chapter 8

boundary
time directories see section 4.2.9

faces
owner
neighbour

Figure 4.1: Case directory structure

in section 4.4. Since we usually start our simulations at time t = 0, the initial
conditions are usually stored in a directory named 0. For example, in the motorBike
tutorial, the velocity field U and pressure field p are initialised from files 0/U and
0/p respectively.

4.2 Basic input/output file format
OpenFOAM needs to read a range of data structures such as strings, words, scalars,
vectors, tensors, lists and fields. The input/output (I/O) format of files is extremely
flexible, following a consistent set of rules that make the files easy to interpret. The
OpenFOAM file format is described in the following sections.

4.2.1 General syntax rules
The format resembles C++ code, following the general principles below.

• Files have free form, with no particular meaning assigned to any column and no
need to indicate continuation across lines.

• Lines have no particular meaning except to a // comment delimiter which makes
OpenFOAM ignore any text that follows it until the end of line.

• A comment over multiple lines is done by enclosing the text between /* and */
delimiters.

4.2.2 Dictionaries
OpenFOAM mainly uses dictionaries to specify data, in which data entries are retrieved
by means of keywords. Each keyword entry follows the general format, beginning with
the keyword and ending in semi-colon (;).
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<keyword> <dataEntry1> ... <dataEntryN>;

Many entries include only a single data entry as shown below.

<keyword> <dataEntry>;

Most data files, e.g. controlDict, are themselves dictionaries since they contain a series
of keyword entries. Any dictionary can contain one or more sub-dictionaries, usually
denoted by a dictionary name and its keyword entries contained within curly braces {}
as follows.

<dictionaryName>
{

... keyword entries ...
}

(Sub-)dictionaries can be nested within others, as shown in the following example. The
extract, from an fvSolution dictionary file, containing two dictionaries, solvers and PIMPLE.
The solvers dictionary contains nested sub-dictionary for different matrix equations based
on different solution variables, e.g. p, U and k (with some entries using regular expressions
described in section 4.2.13).

16
17 solvers
18 {
19 p
20 {
21 solver GAMG;
22 tolerance 1e-7;
23 relTol 0.01;
24
25 smoother DICGaussSeidel;
26
27 }
28
29 pFinal
30 {
31 $p;
32 relTol 0;
33 }
34
35 "(U|k|epsilon)"
36 {
37 solver smoothSolver;
38 smoother symGaussSeidel;
39 tolerance 1e-05;
40 relTol 0.1;
41 }
42
43 "(U|k|epsilon)Final"
44 {
45 $U;
46 relTol 0;
47 }
48 }
49
50 PIMPLE
51 {
52 nNonOrthogonalCorrectors 0;
53 nCorrectors 2;
54 }
55
56
57 // ************************************************************************* //
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4.2.3 The data file header
All data files that are read and written by OpenFOAM begin with a dictionary named
FoamFile containing a standard set of keyword entries, listed below:

• version: I/O format version, optional, defaults to 2.0

• format: data format, ascii or binary

• class: class relating to the data, either dictionary or a field, e.g. volVectorField

• object: filename, e.g. controlDict (mandatory, but not used)

• location: path to the file (optional)

A example header for a controlDict file is shown below.

FoamFile
{

format ascii;
class dictionary;
location "system";
object controlDict;

}

4.2.4 Lists
OpenFOAM applications contain lists, e.g. a list of vertex coordinates for a mesh de-
scription. Lists are commonly found in I/O and have a format of their own in which the
entries are contained within round braces ( ). When a user specifies a list in an input
file, e.g. the vertices list in a blockMeshDict file, it just includes the vertices keyword
and the data in ( ), e.g.

vertices
(

... entries ...
);

When OpenFOAM writes out a list, it invariably prefixes it with the number of ele-
ments in the list. For example the points file for the mesh in the pizDailySteady case con-
tains the following (abbreviated) list, where 25012 denotes the number of vertex points
in the mesh.

25012
(

(-0.0206 0 -0.0005)
(-0.01901716308 0 -0.0005)
... entries ...

);
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In some cases, when OpenFOAM writes out a list, it further prefixes it with the class
name of the list. For example, the inGroups entry in a boundary file of a mesh contains
a list where each group name is a word. The entry for the lowerWall patch from the
pizDailySteady case is shown below, indicating the List<word> class with a single (1)
element.

lowerWall
{

type wall;
inGroups List<word> 1(wall); // Note!
nFaces 250;
startFace 24480;

}

4.2.5 Scalars, vectors and tensors
A scalar is a single number represented as such in a data file. A vector contains three
values, expressed using the simple List format so that the vector (1.0, 1.1, 1.2) is written:

(1.0 1.1 1.2)

In OpenFOAM, a tensor contains nine elements, such that the identity tensor can be
written:

( 1 0 0 0 1 0 0 0 1 )

The user can write the entry over multiple lines to give the “look” of a tensor as a 3 × 3
entity.

(
1 0 0
0 1 0
0 0 1

)

4.2.6 Dimensional units
In continuum mechanics, properties are represented in some chosen units, e.g. mass in
kilograms (kg), volume in cubic metres (m3), pressure in Pascals (kgm−1 s−2). Algebraic
operations must be performed on these properties using consistent units of measurement;
in particular, addition, subtraction and equality are only physically meaningful for prop-
erties of the same dimensional units. As a safeguard against implementing a meaningless
operation, OpenFOAM attaches dimensions to field data and physical properties and
performs dimension checking on any operation.

Dimensions are described by the dimensionSet class which has its own unique I/O
syntax using square brackets, e.g.

[0 2 -1 0 0 0 0]
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where each of the values corresponds to the power of each of the base units of measurement
listed in sequence below:

1. mass, e.g. kilogram (kg), pound-mass (lbm);

2. length, e.g. metre (m), foot (ft);

3. time, e.g. second (s);

4. temperature, e.g. Kelvin (K), degree Rankine (◦R);

5. quantity, e.g. mole (mol);

6. current, e.g. ampere (A);

7. luminous intensity, e.g. candela (cd).

The list presents the base dimensional units used in the Système International (SI) and
the United States Customary System (USCS) . OpenFOAM v12 also allows the dimen-
sional units to be specified by name, starting with the base units, named mass, length,
time, temperature, moles, current, and luminousIntensity. Dimensional units can
be expressed using these names, rather than the array of indices, e.g. dimensions of length
can be written

[length]

instead of [0 1 0 0 0 0 0]. The example, [0 2 -1 0 0 0 0], can be written as

[sqr(length)/time]

where sqr(length) denotes units of length*length. There are also names for “compos-
ite” dimensional units that are commonly used. For example, area represents sqr(length),
so the previous example could be written

[area/time]

In fact, these dimensions are those of kinematic viscosity, for which a named dimension
is predefined by

[kinematicViscosity]

Dimensions do not themselves suggest any particular system of units, e.g. SI or USCS.
OpenFOAM can effectively operate in any unit system, the only requirement being that
the input data is correct for the chosen set of units. Input data may include physical
constants, e.g. the Universal Gas Constant R, whose values must be correct for that

specific unit system.
OpenFOAM defines the constants in the DimensionedConstant sub-dictionary of main

controlDict file of the OpenFOAM installation ($WM_PROJECT_DIR/etc/controlDict).
By default the constants are set in SI units. Those wishing to use the USCS or any other
system of units should modify these constants to their chosen set of units accordingly, as
described in section 4.3.
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4.2.7 Units and unit conversion
OpenFOAM v12 also allows users to accompany single-valued input data with units.
When the data is read with its units, it is converted into the base unit system using
an appropriate factor. Units are defined in the UnitConversions sub-dictionary of main
controlDict file, including a long list of units and conversions to the SI system.

The defined SI units begin with base units, kg, m, s, K, kmol, A and Cd, with a
conversion factor of 1, corresponding to the 7 base dimensional units. There are numerous
derived units, e.g. [min] for minute which has a base unit of s and a conversion factor of
60. Another example with a slightly more complex definition is [cal] for calorie, with a
conversion to [J], with a factor of 4.184. The unit [J] denotes joule, which itself is [N
m], where newton [N] is [kg m s^-2].

Units are added to single-valued parameters after the data value, as shown below in
a snippet of an input file with a volumetric flow rate specified in litres per second.

inlet
{

type flowRateInletVelocity;
volumetricFlowRate 0.1 [l/s];
...

OpenFOAM includes the foamUnit script, described in section 4.2.7, which lists available
named units and dimensions and provided details about them.

4.2.8 Dimensioned types
Physical properties are typically specified with their associated dimensions. They are
often described by the dimensioned class which includes three components: a word name;
a dimensionSet and a value (scalar, vector, etc.).

The I/O for a dimensioned entry can include all three components, using indexed or
named dimensions e.g.

rho rho [1 -3 0 0 0 0 0] 1000;
nu nu [kinematicViscosity] 1e-5;

Note that the first nu is the keyword; the second nu is the word name stored in class word;
the next entry is the dimensionSet and the final entry is the scalar value.

Usually, the word and dimensionSet are specified in the code with default values, so
can be omitted from the I/O as shown below.

rho 1000;
nu 1e-5;

As described in the previous section, a value can be followed by a unit from which the
value is converted to base units. In the example for kinematic viscosity nu, the value
could be specified in centistokes by

nu 10 [cSt];
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4.2.9 Fields
Field files, e.g. U and p, that are read from and written into the time directories, possess
their own customised I/O with the following three key entries.

• dimensions: the dimensions of the field, e.g. [1 -1 -2 0 0 0 0] or [pressure].

• internalField: values within the internal field, e.g. within each cell of a mesh.

• boundaryField: condition (type) and data for each patch of the mesh boundary.

The internalField can be specified in two ways. First, when the user edits a field file
to initialise it, they generally specify a single value across all elements, i.e. the cells (or
faces, points, depending on the type of field) of the mesh. A single value of 0 is denoted
by the uniform keyword as shown below.

internalField uniform 0;

A uniform field can also be initialised using a set of units, e.g. for a pressure of 1 bar:

internalField uniform 1 [bar];

When results are written out, fields cannot generally be represented by a single value.
The output uses the nonuniform keyword, followed by a suitable list of values. The
abbreviated example below is from an output p file for a mesh of 12225 cells.

internalField nonuniform List<scalar>
12225
(
-4.92806
-5.42676
...
);

The boundaryField is a dictionary containing a set of entries corresponding to each
patch listed in the boundary file in the polyMesh directory. Each entry is a sub-dictionary
containing a list of keyword entries. The mandatory entry, type, describes the patch field
condition specified for the field. The remaining entries correspond to the type of patch
field condition selected and can typically include field data specifying initial conditions
on patch faces. A selection of patch field conditions available in OpenFOAM are listed
in section 6.2, section 6.3 and section 6.4, with a description and the data that must be
specified with it. Example field dictionary entries for velocity U are shown below:

16 dimensions [0 1 -1 0 0 0 0];
17
18 internalField uniform (0 0 0);
19
20 boundaryField
21 {
22 inlet
23 {
24 type fixedValue;
25 value uniform (10 0 0);
26 }
27
28 outlet
29 {
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30 type zeroGradient;
31 }
32
33 upperWall
34 {
35 type noSlip;
36 }
37
38 lowerWall
39 {
40 type noSlip;
41 }
42
43 frontAndBack
44 {
45 type empty;
46 }
47 }
48
49 // ************************************************************************* //

4.2.10 Macro expansion
The configuration of case files can benefit from a macro syntax which uses the dollar
($) symbol in front of a keyword to expand the data associated with the keyword. For
example the value set for keyword a below, 10, is expanded in the following line, so that
the value of b is also 10.

a 10;
b $a;

Variables can be accessed within different levels of sub-dictionaries, or scope. Scoping
is performed using a ‘/’ (slash) syntax, illustrated by the following example, where b is
set to the value of a, specified in a sub-dictionary called subdict.

subdictA
{

a 20;
}
b $subdictA/a;

There are further syntax rules for macro expansions:

• to traverse up one level of sub-dictionary, use the ‘..’ (double-dot) prefix, see below;

• to traverse up two levels use ‘../..’ prefix, etc.;

• to traverse to the top level dictionary use the ‘!’ (exclamation mark) prefix (most
useful), see below;

• to traverse into a separate file named otherFile, use ‘otherFile!’, see below;

• for multiple levels of macro substitution, each specified with the ‘$’ dollar syntax,
‘{}’ brackets are required to protect the expansion, see below.

When accessing parameters from another file, the $FOAM_CASE environment variable is
useful to specify the path to the file as described in section 4.2.12 and illustrated below.
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a 10;
b a;
c ${$b}; // returns 10, since $b returns "a", and $a returns 10

subdictA
{

a 20;
}

subdictB
{

// double-dot takes scope up 1 level, then into "subdictA" => 20
b $../subdictA/a;

subsubdict
{

// exclamation mark takes scope to top level => 10
b $!a;

// "a" from another file named "otherFile"
c $otherFile!a;

// "a" from another file "otherFile" in the case directory
d ${${FOAM_CASE}/otherFile!a};

}
}

4.2.11 Including files
Directives are commands that begin with the hash (#) symbol which provide further
flexibility when configuring case files. There is a set of directive commands for reading
a data file from within another data file. If a case requires a single value of pressure of
100 kPa, used in different input files, we could create a file, e.g. named initialConditions,
which contains the following entry:

pressure 1e+05;

In order to use this pressure for internal and initial boundary fields, the user could
simply include the initialConditions file using the #include directive, then use a macro
expansion on the pressure keyword, as follows.

#include "initialConditions"
internalField uniform $pressure;
boundaryField
{

patch1
{

type fixedValue;
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value $internalField;
}

}

This example works if the included file is in the same directory as the file that includes
it. Otherwise, more generally the path to the file is required, e.g. if initialConditions is in
the constant directory:

#include "$FOAM_CASE/constant/initialConditions"

Here $FOAM_CASE represents is the path of the case directory as described in the following
section. The following special forms of the #include directive also exist.

• #includeIfPresent: reads a file if it exists.

• #includeEtc: reads a file with the $FOAM_ETC directory as the starting path.

• #includeFunc: reads file containing a single functionObject configuration, first
searching the case system directory, followed by the $FOAM_ETC directory.

• #includeModel: reads a file containing a single fvModel configuration, first searching
the case constant directory, followed by the $FOAM_ETC directory.

• #includeConstraint: reads a file containing a single fvConstraint configuration,
first searching the case system directory, followed by the $FOAM_ETC directory.

Keyword entries can also be removed with the directive:

#remove <keywordEntry>

where <keywordEntry> can be either a single keyword or a regular expression.

4.2.12 Environment variables
Environment variables can be used in input files. For example, the $FOAM_RUN environ-
ment variable can be used to identify the run directory, as described in the introduction
to Chapter 2. This could be used to include a file, e.g. by

#include "$FOAM_RUN/pitzDailySteady/0/U"

In addition to environment variables like $FOAM_RUN, set within the operating sys-
tem, a number of “internal” environment variables are recognised, including the following.

• $FOAM_CASE: the path and directory of the running case.

• $FOAM_CASENAME: the directory name of the running case.

• $FOAM_APPLICATION: the name of the running application.
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4.2.13 Regular expressions
As discussed, data is looked up from files using keywords. If a particular keyword does not
exist, the I/O system will try to match the keyword with any POSIX regular expression,
specified inside double-quotations ("...") in the input file.

In some cases, when the I/O system searches for a keyword in a case file, a can be
used to match the keyword

When running an application, data is initialised by looking up keywords from dic-
tionaries. The user can either provide an entry with a keyword that directly matches
the one being looked up, or can provide a that matches the keyword, specified inside
double-quotations ("...").

Regular expressions have an extensive syntax for various matches of text patterns but
in OpenFOAM input files there are only two expressions that are generally used. Firstly,
‘.’ denoting “any character”, and ‘*’ denoting “repeated any number of times, including
0 times” is often used in combination to match “any characters”. For example, to specify
a noSlip boundary condition for any patch whose name ends Wall. . . , the user could
specify in the boundaryField for U:

".*Wall"
{

type noSlip;
}

The other common regular expression uses () to group expressions. For example, to a
noSlip boundary condition on two wall patches named upper and lower, the user could
specify:

"(upper|lower)"
{

type noSlip;
}

4.2.14 Keyword ordering
The order in which keywords are listed does not matter, except when the same keyword

is specified multiple times. Where the same keyword is duplicated, the last instance is
used. The most common example of a duplicate keyword occurs when a keyword is
included from the file or expanded from a macro, and then overridden. The example
below demonstrates this, where pFinal adopts all the keyword entries, including relTol
0.05 in the p sub-dictionary by the macro expansion $p, then overrides the relTol entry.

p
{

solver PCG;
preconditioner DIC;
tolerance 1e-6;
relTol 0.05;

}
pFinal
{
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$p;
relTol 0;

}

Where a data lookup matches both a keyword and a regular expression, the keyword
match takes precedence irrespective of the order of the entries.

4.2.15 Inline calculations
There are two further directives that enable calculations from within input files: #calc,
described here, for simple calculations; and #codeStream, for more complex calculations,
described in section 4.2.15.

The pipeCyclic tutorial in $FOAM_TUTORIALS/incompressibleFluid demonstrates the
#calc directive through its blockMesh configuration in blockMeshDict:

//- Half angle of wedge in degrees
halfAngle 45.0;

//- Radius of pipe [m]
radius 0.5;

radHalfAngle #calc "degToRad($halfAngle)";
y #calc "$radius*sin($radHalfAngle)";
z #calc "$radius*cos($radHalfAngle)";

The file contains several calculations that calculate vertex ordinates, e.g. y, z, etc., from
geometry dimensions, e.g. radius.

Calculations include standard C++ functions including unit conversions, e.g. degToRad,
and trigonometric functions, e.g. sin. They can also include OpenFOAM mathematical
functions if the relevant header files are included for those functions. The #calcInclude
directive enables header files to be included for use with #calc.

The aerofoilNACA0012Steady example, using the fluid solver module, sets the inlet ve-
locity using an angle of attack using the code below. The transform function is provided
by the transform.H header file, to rotate unit vectors by the angle of attack to set the lift
and drag directions.

angleOfAttack 5; // degs

angle #calc "-degToRad($angleOfAttack)";

#calcInclude "transform.H"
liftDir #calc "transform(Ry($angle), vector(0, 0, 1))";
dragDir #calc "transform(Ry($angle), vector(1, 0, 0))";

Uinlet #calc "$speed*$<vector>dragDir";

The final line in the example above shows that dictionary entries constructed with #calc
or #codeStream (see below) can use variables that represent OpenFOAM classes, or
types, such as vector, tensor, List, Field, string etc.. To create a typed variable, the type is
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specified inside angled brackets <>, immediately after the $ symbol, e.g. $<vector>var or
$<vector>{var} substitutes a variable named var as a vector. A simpler example shows
a calculation c = a •b using #calc.

a (1 2 3);
b (1 1 0);
c #calc "$<vector>a & $<vector>b";

Care is required with calculations involving a division because the / character
is otherwise used to identify keywords in sub-dictionaries, "$a/b" looks for a keyword b
within a sub-dictionary named a. Where a division is required, the user can put spaces
around the /, e.g.

c #calc "$a / $b";

or they can apply brackets around the first variable, e.g.

c #calc "$(a)/$b";

The code string can also be delimited by #{. . . #} instead of quotation marks ". . . ".
The former delimiter supports code strings across multiple lines and avoids problems
with string typed variables that may contain quotation marks, as shown in the following
example.

s "field";
fieldName #calc
#{

$<string>s + "Name"
#};

Further examples can be found in files in the test/dictionary directory in the OpenFOAM
installation.

4.2.16 Inline code
The #codeStream directive takes C++ code which is compiled and executed to deliver
the dictionary entry. The code and compilation instructions are specified through the
following keywords.

• code: specifies the code using arguments OStream& os and const dictionary&
dict which can be used in the code, e.g. to lookup keyword entries from within the
current case file.

• codeInclude (optional): specifies additional C++ #include statements to include
code files.

• codeOptions (optional): specifies any extra compilation flags to be added to EXE_INC
in Make/options.

• codeLibs (optional): specifies any extra compilation flags to be added to LIB_LIBS
in Make/options.
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Code, like any string, can be written across multiple lines by enclosing it within hash-
bracket delimiters, i.e. #{...#}. Anything in between these two delimiters becomes a
string with all newlines, quotes, etc. preserved.

An example of #codeStream is given below, where the code in the calculates moment
of inertia of a box shaped geometry.

momentOfInertia #codeStream
{

codeInclude
#{

#include "diagTensor.H"
#};

code
#{

scalar sqrLx = sqr($Lx);
scalar sqrLy = sqr($Ly);
scalar sqrLz = sqr($Lz);
os <<

$mass
*diagTensor(sqrLy + sqrLz, sqrLx + sqrLz, sqrLx + sqrLy)/12.0;

#};
};

4.2.17 Conditionals
Input files support two conditional directives: #if. . . #else. . . #endif; and, #ifEq. . .
#else. . . #endif. The #if conditional reads a switch that can be generated by a #calc
directive, e.g.:

angle 65;

laplacianSchemes
{
#if #calc "${angle} < 75"

default Gauss linear corrected;
#else

default Gauss linear limited corrected 0.5;
#endif
}

The #ifEq compares a word or string, and executes based on a match, e.g.:

rotating
{

timeScheme ${${FOAM_CASE}/system/fvSchemes!ddtSchemes/default};
#ifeq $timeScheme steadyState

type MRFnoSlip;
#else

type movingWallVelocity;
#endif

value uniform (0 0 0);
}

4.3 Global controls
OpenFOAM includes a large number of global parameters that are configured by default
in a file named controlDict. This is the so-called “global” controlDict file, as opposed to a
case controlDict file that is described in the following section.

The global controlDict file can be found in the installation within a directory named etc,
represented by the environment variable $FOAM_ETC. The file contains sub-dictionaries
for the following items.
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• Documentation: for opening documentation in a web browser.

• InfoSwitches: controls information printed to standard output, i.e. the terminal.

• OptimisationSwitches: for parallel communication and I/O, see section 3.4.2.

• DebugSwitches: messaging switches to help debug code failures, as described in
section 3.2.11.

• DimensionedConstants: defines fundamental physical constants, e.g. Boltzmann’s
Constant.

• UnitConversions: defines units and conversion factors, e.g. cal for calorie, see
section 4.2.7.

4.3.1 Overriding global controls
The values of the DimensionedConstants depend on the unit system being adopted, i.e.
the International System of Units (SI units), or US Customary system (USCS), based on
English units (pounds, feet, etc.). The default system is naturally SI, but some users may
wish to override this with USCS units, either globally or for a specific case. The system
is set through the unitSet keyword, i.e.

DimensionedConstants
{

unitSet SI; // USCS
}

While a user could modify this setting in the etc/controlDict file in the installation,
it is better practice to use a file in their user directory. OpenFOAM provides a set of
directory locations, where global configuration files can be included, which it looks up in
an order of precedence. To list the locations, simply run the following command.

foamEtcFile -list

The listed locations include a local $HOME/.OpenFOAM directory and follow a descending
order of precedence, i.e. the last location listed (etc) is lowest precedence.

If a user therefore wished to work permanently in USCS units, they could maintain a
controlDict file in their $HOME/.OpenFOAM directory that includes the following entry.

DimensionedConstants
{

unitSet USCS;
}

OpenFOAM would read the unitSet entry from this file, but read all other controlDict
keyword entries from the global controlDict file.

Alternatively, if a user wished to work on a single case in USCS units, they could add
the same entry into the controlDict file in the system directory for their case. This file is
discussed in the next section.
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4.4 Time and data input/output control
The OpenFOAM solvers begin all runs by setting up a database. The database controls
I/O and, since output of data is usually requested at intervals of time during the run, time
is an inextricable part of the database. The controlDict dictionary sets input parameters
essential for the creation of the database. The keyword entries in controlDict are listed in
the following sections. Only the time control and writeInterval entries are mandatory,
with the database using default values for any of the optional entries that are omitted.
Example entries from a controlDict dictionary are given below:

16
17 solver incompressibleFluid;
18
19 startFrom latestTime;
20
21 startTime 0;
22
23 stopAt endTime;
24
25 endTime 0.3;
26
27 deltaT 0.0001;
28
29 writeControl adjustableRunTime;
30
31 writeInterval 0.01;
32
33 purgeWrite 0;
34
35 writeFormat ascii;
36
37 writePrecision 6;
38
39 writeCompression off;
40
41 timeFormat general;
42
43 timePrecision 6;
44
45 runTimeModifiable yes;
46
47 adjustTimeStep yes;
48
49 maxCo 5;
50
51 // ************************************************************************* //

4.4.1 Modules
solver Choice of solver module for the simulation, e.g. incompressibleFluid

regionSolvers Dictionary of solvers for different domain regions, e.g. heat transfer of
water flowing over a plate might use the fluid and solid modules as follows:

regionSolvers
{

water fluid;
plate solid;

}

libs List of additional libraries (existing on $LD_LIBRARY_PATH) to be loaded at run-
time, e.g. ("libNew1.so" "libNew2.so")

4.4.2 Time control
startFrom Controls the start time of the simulation.
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• firstTime: Earliest time step from the set of time directories.
• startTime: Time specified by the startTime keyword entry.
• latestTime: Most recent time step from the set of time directories.

startTime Start time for the simulation with startFrom startTime;

stopAt Controls the end time of the simulation.

• endTime: Time specified by the endTime keyword entry.
• writeNow: Stops simulation on completion of current time step and writes

data.
• noWriteNow: Stops simulation on completion of current time step and does

not write out data.
• nextWrite: Stops simulation on completion of next scheduled write time, spec-

ified by writeControl.

endTime End time for the simulation when stopAt endTime; is specified.

deltaT Time step of the simulation.

4.4.3 Data writing
writeControl Controls the timing of write output to file.

• timeStep: Writes data every writeInterval time steps.
• runTime: Writes data every writeInterval seconds of simulated time.
• adjustableRunTime: Writes data every writeInterval seconds of simulated

time, adjusting the time steps to coincide with the writeInterval if necessary
— used in cases with automatic time step adjustment.

• cpuTime: Writes data every writeInterval seconds of CPU time.
• clockTime: Writes data out every writeInterval seconds of real time.

writeInterval Scalar used in conjunction with writeControl described above.

purgeWrite Integer representing a limit on the number of time directories that are stored
by overwriting time directories on a cyclic basis. For example, if the simulations
starts at t = 5s and ∆t = 1s, then with purgeWrite 2;, data is first written into 2
directories, 6 and 7, then when 8 is written, 6 is deleted, and so on so that only 2 new
results directories exists at any time. To disable the purging, specify purgeWrite
0; (default).

writeFormat Specifies the format of the data files.

• ascii (default): ASCII format, written to writePrecision significant figures.
• binary: binary format.

writePrecision Integer used in conjunction with writeFormat described above, 6 by
default.
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writeCompression Switch to specify whether files are compressed with gzip when writ-
ten: on/off (yes/no, true/false)

timeFormat Choice of format of the naming of the time directories.

• fixed: ±m.dddddd where the number of ds is set by timePrecision.
• scientific: ±m.dddddde±xx where the number of ds is set by timePrecision.
• general (default): Specifies scientific format if the exponent is less than -4

or greater than or equal to that specified by timePrecision.

timePrecision Integer used in conjunction with timeFormat described above, 6 by de-
fault.

graphFormat Format for graph data written by an application.

• raw (default): Raw ASCII format in columns.
• gnuplot: Data in gnuplot format.
• csv: Comma-separated values.
• vtk: Visualisation Toolkit (VTK) format.
• ensight: Ensight format.

4.4.4 Other settings
beginTime Optional entry to for cases with an unusual start time that causes inconve-

nient write times. With beginTime, the write times are multiples of writeInterval,
starting at the beginTime. For example, if the start time of 1.52 and a writeInterval
of 1, results would be written at 2.52, 3.52, . . . If beginTime is set to 0 (or 1), the
write times would be 2, 3, etc.
Switch used by some solvers to adjust the time step during the simulation, usually
according to maxCo.

adjustTimeStep Switch used by some solvers to adjust the time step during the simula-
tion, usually according to maxCo.

maxCo Maximum Courant number, e.g. 0.5

runTimeModifiable Switch for whether dictionaries, e.g.controlDict, are re-read during
a simulation at the beginning of each time step, allowing the user to modify param-
eters during a simulation.

functions Dictionary of functions, e.g. probes to be loaded at run-time; see examples
in $FOAM_TUTORIALS

4.5 Numerical schemes
The fvSchemes dictionary in the system directory sets the numerical schemes for terms,
such as derivatives in equations, that are calculated during a simulation. This section
describes how to specify the schemes in the fvSchemes dictionary. Details of the schemes
are described in Chapter 3 of Notes on Computational Fluid Dynamics: General

Principles.

OpenFOAM-13

https://doc.cfd.direct/notes/cfd-general-principles/numerical-method
https://doc.cfd.direct/notes/cfd-general-principles/numerical-method


U-110 OpenFOAM cases

The aim for fvSchemes is to provide an unrestricted choice of schemes to the user for
everything from derivatives, e.g. gradient ∇, to interpolations of values from one set of
points to another. OpenFOAM uses the finite volume method so spatial derivatives are
based on Gaussian integration which sums values on cell faces, which must be interpolated
from cell centres. The user has a wide range of options for interpolation schemes, with
certain schemes being specifically designed for particular derivative terms, especially the
advection divergence ∇ • terms.

The set of terms, for which numerical schemes must be specified, are subdivided within
the fvSchemes dictionary into the categories below, using Ψ as an example field variable.

• timeScheme: first and second time derivatives, e.g. ∂Ψ/∂t, ∂2Ψ/∂2t

• gradSchemes: gradient ∇Ψ

• divSchemes: divergence ∇ •Ψ

• laplacianSchemes: Laplacian ∇ •Γ∇Ψ, with diffusivity Γ

• interpolationSchemes: cell to face interpolations of values.

• snGradSchemes: component of gradient normal to a cell face.

• wallDist: distance to wall calculation, where required.

Each keyword is the name of a sub-dictionary which contains terms of a particular type,
e.g. gradSchemes contains all the gradient derivative terms such as grad(p) (which rep-
resents ∇p). Further examples can be seen in the extract from an fvSchemes dictionary
below:

16
17 ddtSchemes
18 {
19 default Euler;
20 }
21
22 gradSchemes
23 {
24 default Gauss linear;
25 }
26
27 divSchemes
28 {
29 default none;
30
31 div(phi,U) Gauss linearUpwind grad(U);
32 div(phi,k) Gauss upwind;
33 div(phi,epsilon) Gauss upwind;
34 div(phi,R) Gauss upwind;
35 div(R) Gauss linear;
36 div(phi,nuTilda) Gauss upwind;
37
38 div((nuEff*dev2(T(grad(U))))) Gauss linear;
39 }
40
41 laplacianSchemes
42 {
43 default Gauss linear corrected;
44 }
45
46 interpolationSchemes
47 {
48 default linear;
49 }
50
51 snGradSchemes
52 {
53 default corrected;
54 }
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55
56
57 // ************************************************************************* //

The example shows fvSchemes with 6 . . . Schemes subdictionaries, each containing key-
word entries including: a default entry; other entries for the particular term specified,
e.g. div(phi, k) for∇ • (Uk). If a default scheme is specified in a particular . . . Schemes
sub-dictionary, it is assigned to all of the terms to which the sub-dictionary refers, e.g.
specifying a default in gradSchemes sets the scheme for all gradient terms in the appli-
cation, e.g. ∇p, ∇U. With a default specified, the specific terms are not required in
that sub-dictionary, i.e. the entries for grad(p), grad(U) are omitted in this example.
Specifying a particular will however override the default scheme.

The user can specify no default scheme by the none entry, as in the divSchemes in
the example above. The user is then obliged to specify all terms in that sub-dictionary
individually. Setting default to none ensures the user specifies all terms individually
which is common for divSchemes which requires precise configuration.

OpenFOAM includes a vast number of discretisation schemes, from which only a
few are typically recommended for real-world, engineering applications. The user can
get help with scheme selection by interrogating the tutorial cases for example scheme
settings. They should look at the schemes used in relevant cases, e.g. for running a large-
eddy simulation (LES), look at schemes used in tutorials running LES. Additionally,
foamSearch is a useful tool to list the schemes used in all the tutorials. For example,
to print all the default entries for ddtSchemes for cases in the $FOAM_TUTORIALS
directory, the user can type:

foamSearch $FOAM_TUTORIALS fvSchemes ddtSchemes/default

which returns:

default backward;
default CrankNicolson 0.9;
default Euler;
default localEuler;
default none;
default steadyState;

The schemes listed using foamSearch are described in the following sections.

4.5.1 Time schemes
The first time derivative (∂/∂t) terms are specified in the ddtSchemes sub-dictionary. The
discretisation schemes for each term can be selected from those listed below.

• steadyState: sets time derivatives to zero.

• Euler: transient, first order implicit, bounded.

• backward: transient, second order implicit, potentially unbounded.

• CrankNicolson: transient, second order implicit, bounded; requires an off-centering
coefficient ψ where:

ψ =

1 corresponds to pure CrankNicolson,
0 corresponds to Euler;
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generally ψ = 0.9 is used to stabilise the scheme for practical engineering problems.

• localEuler: pseudo transient for accelerating a solution to steady-state using local-
time stepping; first order implicit.

Any second time derivative (∂2/∂t2) terms are specified in the d2dt2Schemes sub-
dictionary. Only the Euler scheme is available for d2dt2Schemes.

4.5.2 Gradient schemes
The gradSchemes sub-dictionary contains gradient terms. The default discretisation
scheme that is primarily used for gradient terms is:

default Gauss linear;

The Gauss entry specifies the standard finite volume discretisation with Gaussian inte-
gration which requires the interpolation of values from cell centres to face centres. The
interpolation scheme is then given by the linear entry, meaning linear interpolation or
central differencing.

In some tutorials cases, particular involving poorer quality meshes, the discretisation
of specific gradient terms is then overridden to improve boundedness and stability. The
terms that are overridden in those cases are the velocity gradient

grad(U) cellLimited Gauss linear 1;

and, less frequently, the gradient of turbulence fields, e.g.

grad(k) cellLimited Gauss linear 1;
grad(epsilon) cellLimited Gauss linear 1;

They use the cellLimited scheme which limits the gradient such that when cell values
are extrapolated to faces using the calculated gradient, the face values do not fall outside
the bounds of values in surrounding cells. A limiting coefficient is specified after the
underlying scheme for which 1 guarantees boundedness and 0 applies no limiting; 1 is
invariably used.

Other schemes that are rarely used are as follows.

• leastSquares: a second-order, least squares distance calculation using all neigh-
bour cells.

• Gauss cubic: third-order scheme that appears in solidDisplacement and dnsFoam
examples.

4.5.3 Divergence schemes
The divSchemes sub-dictionary contains divergence terms, i.e. terms of the form ∇ • . . . ,
excluding Laplacian terms (of the form ∇ •Γ∇Ψ). This includes both advection terms,
e.g. ∇ • (Uk), where velocity U provides the advective flux, and other terms, that are
often diffusive in nature, e.g. ∇ • ν(∇U)T.

The fact that terms that are fundamentally different reside in one sub-dictionary means
that the default scheme in generally set to none in divSchemes. The non-advective terms
then generally use the Gauss integration with linear interpolation, e.g.
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div(U) Gauss linear;

The treatment of advective terms is one of the major challenges in CFD numerics and
so the options are more extensive. The keyword identifier for the advective terms are
usually of the form div(phi,...), where phi denotes the (volumetric) flux of velocity
on the cell faces for constant-density flows and the mass flux for compressible flows,
e.g. div(phi,U) for the advection of velocity, div(phi,e) for the advection of internal
energy, etc. For advection of velocity, the user can run the foamSearch script to extract
the div(phi,U) keyword from all tutorials.

foamSearch $FOAM_TUTORIALS fvSchemes "divSchemes/div(phi,U)"

The schemes are all based on Gauss integration, using the flux phi and the advected
field being interpolated to the cell faces by one of a selection of schemes, e.g. linear,
linearUpwind, etc. There is a bounded variant of the discretisation, discussed later.

Ignoring ‘V’-schemes (with keywords ending “V”), and rarely-used schemes such as
Gauss cubic and vanLeerV, the interpolation schemes used in the tutorials are as follows.

• linear: second order, unbounded.

• linearUpwind: second order, upwind-biased, unbounded (but much less so than
linear), that requires discretisation of the velocity gradient to be specified.

• LUST: blended 75% linear/ 25%linearUpwind scheme, that requires discretisation
of the velocity gradient to be specified.

• limitedLinear: linear scheme that limits towards upwind in regions of rapidly
changing gradient; requires a coefficient, where 1 is strongest limiting, tending to-
wards linear as the coefficient tends to 0.

• upwind: first-order bounded, generally too inaccurate for velocity but more often
used for transport of scalar fields.

Example syntax for these schemes is as follows.

div(phi,U) Gauss linear;
div(phi,U) Gauss linearUpwind grad(U);
div(phi,U) Gauss LUST grad(U);
div(phi,U) Gauss LUST unlimitedGrad(U);
div(phi,U) Gauss limitedLinear 1;
div(phi,U) Gauss upwind;

‘V’-schemes are specialised versions of schemes designed for vector fields. They
differ from conventional schemes by calculating a single limiter which is applied to all
components of the vectors, rather than calculating separate limiters for each component
of the vector. The ‘V’-schemes’ single limiter is calculated based on the direction of most
rapidly changing gradient, resulting in the strongest limiter being calculated which is
most stable but arguably less accurate. Example syntax is as follows.

div(phi,U) Gauss limitedLinearV 1;
div(phi,U) Gauss linearUpwindV grad(U);
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The bounded variants of schemes relate to the treatment of the material time derivative
which can be expressed in terms of a spatial time derivative and convection, e.g. for field
e in incompressible flow

De

Dt
= ∂e

∂t
+U •∇e = ∂e

∂t
+∇ • (Ue)− (∇ •U)e (4.1)

For numerical solution of incompressible flows, ∇ •U = 0 at convergence, at which point
the third term on the right hand side is zero. Before convergence is reached, however,
∇ •U ̸= 0 and in some circumstances, particularly steady-state simulations, it is better
to include the third term within a numerical solution to help maintain boundedness of
the solution variable and promote better convergence. The bounded variant of the Gauss
scheme provides this, automatically including the discretisation of the third-term with the
advection term. Example syntax is as follows, as seen in fvSchemes files for steady-state
cases.

div(phi,U) bounded Gauss limitedLinearV 1;
div(phi,U) bounded Gauss linearUpwindV grad(U);

The schemes used for advection of scalar fields are similar to those for advection
of velocity, although in general there is greater emphasis placed on boundedness than
accuracy when selecting the schemes. For example, a search for schemes for advection of
internal energy (e) reveals the following.

foamSearch $FOAM_TUTORIALS fvSchemes "divSchemes/div(phi,e)"

div(phi,e) bounded Gauss upwind;
div(phi,e) Gauss limitedLinear 1;
div(phi,e) Gauss linearUpwind limited;
div(phi,e) Gauss LUST grad(e);
div(phi,e) Gauss upwind;
div(phi,e) Gauss vanAlbada;

In comparison with advection of velocity, there are no cases set up to use linear. The
limitedLinear and upwind schemes are commonly used, with the additional appearance
of vanLeer, another limited scheme, with less strong limiting than limitedLinear.

There are specialised versions of the limited schemes for scalar fields that are commonly
bounded between 0 and 1, e.g. the laminar flame speed regress variable b. A search for
the discretisation used for advection in the laminar flame transport equation yields:

div(phiSt,b) Gauss limitedLinear01 1;

The underlying scheme is limitedLinear, specialised for stronger bounding between 0
and 1 by adding 01 to the name of the scheme.

The multivariateSelection mechanism also exists for grouping multiple equation
terms together, and applying the same limiters on all terms, using the strongest limiter
calculated for all terms. A good example of this is in a set of mass transport equations for
fluid species, where it is good practice to apply the same discretisation to all equations for
consistency. The example below comes from the smallPoolFire3D tutorial in $FOAM_TUT-
ORIALS/multicompon/entFluid, in which the equation for enthalpy h is included with the
specie mass transport equations in the calculation of a single limiter.
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div(phi,Yi_h) Gauss multivariateSelection
{

O2 limitedLinear01 1;
CH4 limitedLinear01 1;
N2 limitedLinear01 1;
H2O limitedLinear01 1;
CO2 limitedLinear01 1;
h limitedLinear 1 ;

}

4.5.4 Surface normal gradient schemes
It is worth explaining the snGradSchemes sub-dictionary that contains surface normal gra-
dient terms, before discussion of laplacianSchemes, because they are required to evaluate
a Laplacian term using Gaussian integration. A surface normal gradient is evaluated at a
cell face; it is the component, normal to the face, of the gradient of values at the centres
of the 2 cells that the face connects.

A search for the default scheme for snGradSchemes reveals the following entries.

default corrected;
default limited corrected 0.33;
default limited corrected 0.5;
default orthogonal;
default uncorrected;

The basis of the gradient calculation at a face is to subtract the value at the cell
centre on one side of the face from the value in the centre on the other side and divide
by the distance. The calculation is second-order accurate for the gradient normal to the

face if the vector connecting the cell centres is orthogonal to the face, i.e. they are at
right-angles. This is the orthogonal scheme.

Orthogonality requires a regular mesh, typically aligned with the Cartesian co-ordinate
system, which does not generally occur with real world, engineering geometries. Therefore,
to maintain second-order accuracy, an explicit non-orthogonal correction can be added to
the orthogonal component, known as the corrected scheme. The correction increases in
size as the non-orthogonality, i.e. the angle α between the cell-cell vector and face normal
vector, increases.

As α tends towards 90◦, typically beyond 75◦, the explicit correction can be so large to
cause a solution to go unstable. The solution can be stabilised by applying the limited
scheme to the correction which requires a coefficient ψ, 0 ≤ ψ ≤ 1 where

ψ =


0 corresponds to uncorrected,
0.333 non-orthogonal correction ≤ 0.5× orthogonal part,
0.5 non-orthogonal correction ≤ orthogonal part,
1 corresponds to corrected.

(4.2)

Typically, psi is chosen to be 0.33 or 0.5, where 0.33 offers greater stability and 0.5 greater
accuracy.
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The corrected scheme applies under-relaxation in which the implicit orthogonal cal-
culation is increased by cos−1α, with an equivalent boost within the non-orthogonal cor-
rection. The uncorrected scheme is equivalent to the corrected scheme, without the
non-orthogonal correction, so is like orthogonal but with the additional cos−1α under-
relaxation.

Generally the uncorrected and orthogonal schemes are only recommended for meshes
with very low non-orthogonality (e.g. maximum 5◦). The corrected scheme is generally
recommended, but for maximum non-orthogonality above 75◦, limited may be required.
At non-orthogonality above 85◦, convergence is generally hard to achieve.

4.5.5 Laplacian schemes
The laplacianSchemes sub-dictionary contains Laplacian terms. A typical Laplacian term
is ∇ • (ν∇U), the diffusion term in the momentum equations, which corresponds to the
keyword laplacian(nu,U) in laplacianSchemes. The Gauss scheme is the only choice of
discretisation and requires a selection of both an interpolation scheme for the diffusion
coefficient, i.e. ν in our example, and a surface normal gradient scheme, i.e. ∇U. To
summarise, the entries required are:

Gauss <interpolationScheme> <snGradScheme>

The user can search for the default scheme for laplacianSchemes in all the cases in the
$FOAM_TUTORIALS directory.

foamSearch $FOAM_TUTORIALS fvSchemes laplacianSchemes/default

It reveals the following entries.

default Gauss linear corrected;
default Gauss linear limited corrected 0.33;
default Gauss linear limited corrected 0.5;
default Gauss linear orthogonal;
default Gauss linear uncorrected;

In all cases, the linear interpolation scheme is used for interpolation of the diffusiv-
ity. The cases uses the same array of snGradSchemes based on the maximum non-
orthogonality in the mesh, as described in section 4.5.4.

4.5.6 Interpolation schemes
The interpolationSchemes sub-dictionary contains terms that are interpolations of values
typically from cell centres to face centres, primarily used in the interpolation of velocity
to face centres for the calculation of flux phi. There are numerous interpolation schemes
in OpenFOAM, but a search for the default scheme in all the tutorial cases reveals that
linear interpolation is used in almost every case, except for one stress analysis example
which uses cubic interpolation.
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4.6 Solution and algorithm control
Once a matrix equation is constructed according to the schemes in the previous section, a
linear solver is applied. A set of equations is also framed within an algorithm containing
loops and controls. For information about the main algorithms and solvers in Open-
FOAM, refer to Chapter 5 of Notes on Computational Fluid Dynamics: General

Principles.
The controls for algorithms and solvers are found in the fvSolution dictionary in the

system directory. Below is an example set of entries from the fvSolution dictionary for a
case using the incompressibleFluid modular solver.

16
17 solvers
18 {
19 p
20 {
21 solver GAMG;
22 tolerance 1e-7;
23 relTol 0.01;
24
25 smoother DICGaussSeidel;
26
27 }
28
29 pFinal
30 {
31 $p;
32 relTol 0;
33 }
34
35 "(U|k|epsilon)"
36 {
37 solver smoothSolver;
38 smoother symGaussSeidel;
39 tolerance 1e-05;
40 relTol 0.1;
41 }
42
43 "(U|k|epsilon)Final"
44 {
45 $U;
46 relTol 0;
47 }
48 }
49
50 PIMPLE
51 {
52 nNonOrthogonalCorrectors 0;
53 nCorrectors 2;
54 }
55
56
57 // ************************************************************************* //

fvSolution contains a set of subdictionaries, described in the remainder of this section
that includes: solvers; relaxationFactors; and, SIMPLE for steady-state cases or PIMPLE
for transient or pseudo-transient cases.

4.6.1 Linear solver control
The first sub-dictionary in our example is solvers. It specifies each linear solver that is
used for each discretised equation; here, the term linear solver refers to the method of
number-crunching to solve a matrix equation, as opposed to an modular solver, such as
incompressibleFluid which describes the entire set of equations and algorithms to solve a
particular problem. The term ‘linear solver’ is abbreviated to ‘solver’ in much of what
follows; hopefully the context of the term avoids any ambiguity.

The syntax for each entry within solvers starts with a keyword that for the variable
being solved in the particular equation. For example, incompressibleFluid solves equa-
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tions for pressure p, velocity U and often turbulence fields, hence the entries for p, U,
k and epsilon. The keyword introduces a sub-dictionary containing the type of solver
and the parameters that the solver uses. The solver is selected through the solver
keyword from the options listed below. The parameters, including tolerance, relTol,
preconditioner, etc. are described in following sections.

• PCG/PBiCGStab: Stabilised preconditioned (bi-)conjugate gradient, for both sym-
metric and asymmetric matrices.

• PCG/PBiCG: preconditioned (bi-)conjugate gradient, with PCG for symmetric matri-
ces, PBiCG for asymmetric matrices.

• smoothSolver: solver that uses a smoother.

• GAMG: generalised geometric-algebraic multi-grid.

• diagonal: diagonal solver for explicit systems.

The solvers distinguish between symmetric matrices and asymmetric matrices. The sym-
metry of the matrix depends on the terms of the equation being solved, e.g. time deriva-
tives and Laplacian terms form coefficients of a symmetric matrix, whereas an advective
derivative introduces asymmetry. If the user specifies a symmetric solver for an asymmet-
ric matrix, or vice versa, an error message will be written to advise the user accordingly,
e.g.

--> FOAM FATAL IO ERROR : Unknown asymmetric matrix solver PCG
Valid asymmetric matrix solvers are :
4
(
GAMG
PBiCG
PBiCGStab
smoothSolver
)

4.6.2 Solution tolerances
The finite volume method generally solves equations in a segregated, decoupled manner,
meaning that each matrix equation solves for only one variable. The matrices are con-
sequently sparse, meaning they predominately include coefficients of 0. The solvers are
generally iterative, i.e. they are based on reducing the equation residual over successive
solutions. The residual is ostensibly a measure of the error in the solution so that the
smaller it is, the more accurate the solution. More precisely, the residual is evaluated by
substituting the current solution into the equation and taking the magnitude of the dif-
ference between the left and right hand sides; it is also normalised to make it independent
of the scale of the problem being analysed.

Before solving an equation for a particular field, the initial residual is evaluated based
on the current values of the field. After each solver iteration the residual is re-evaluated.
The solver stops if any one of the following conditions are reached:

• the residual falls below the solver tolerance, tolerance;
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• the ratio of current to initial residuals falls below the solver relative tolerance,
relTol;

• the number of iterations exceeds a maximum number of iterations, maxIter;

The solver tolerance should represent the level at which the residual is small enough
that the solution can be deemed sufficiently accurate. The solver relative tolerance limits
the relative improvement from initial to final solution. In transient simulations, it is usual
to set the solver relative tolerance to 0 to force the solution to converge to the solver
tolerance in each time step. The tolerances, tolerance and relTol must be specified in
the dictionaries for all solvers; maxIter is optional and defaults to a value of 1000.

Equations are very often solved multiple times within one solution step, or time step.
For example, when using the PIMPLE algorithm, a pressure equation is solved according
to the number specified by nCorrectors, as described in section 4.6.7. Where this occurs,
the solver is very often set up to use different settings when solving the particular equation
for the final time, specified by a keyword that adds Final to the field name. For example,
in the transient pitzDaily example for the incompressibleFluid solver, the solver settings for
pressure are as follows.

p
{

solver GAMG;
tolerance 1e-07;
relTol 0.01;
smoother DICGaussSeidel;

}

pFinal
{

$p;
relTol 0;

}

If the case is specified to solve pressure 4 times within one time step, then the first 3
solutions would use the settings for p with relTol of 0.01, so that the cost of solving each
equation is relatively low. Only when the equation is solved the final (4th) time, it solves
to a residual level specified by tolerance (since relTol is 0, effectively deactivating it)
for greater accuracy, but at greater cost.

4.6.3 Preconditioned conjugate gradient solvers
There are a range of options for preconditioning of matrices in the conjugate gradient
solvers, represented by the preconditioner keyword in the solver dictionary, listed be-
low. Note that the DIC/DILU preconditioners are exclusively specified in the tutorials in
OpenFOAM.

• DIC/DILU: diagonal incomplete-Cholesky (symmetric) and incomplete-LU (asym-
metric)

• FDIC: slightly faster diagonal incomplete-Cholesky (DIC with caching, symmetric)
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• GAMG: geometric-algebraic multi-grid.

• diagonal: diagonal preconditioning, not generally used.

• none: no preconditioning.

4.6.4 Smooth solvers
The solvers that use a smoother require the choice of smoother to be specified. The
smoother options are listed below. The symGaussSeidel and GaussSeidel smoothers
are preferred in the tutorials.

• GaussSeidel: Gauss-Seidel.

• symGaussSeidel: symmetric Gauss-Seidel.

• DIC/DILU: diagonal incomplete-Cholesky (symmetric), incomplete-LU (asymmet-
ric).

• DICGaussSeidel: diagonal incomplete-Cholesky/LU with Gauss-Seidel (symmetric/-
asymmetric).

When using the smooth solvers, the user can optionally specify the number of sweeps, by
the nSweeps keyword, before the residual is recalculated. Without setting it, it reverts to
a default value of 1.

4.6.5 Geometric-algebraic multi-grid solvers
The geometric-algebraic multi-grid (GAMG) method uses the principle of: generating a
quick solution on a mesh with a small number of cells; mapping this solution onto a finer
mesh; using it as an initial guess to obtain an accurate solution on the fine mesh. GAMG
is faster than standard methods when the increase in speed by solving first on coarser
meshes outweighs the additional costs of mesh refinement and mapping of field data. In
practice, GAMG starts with the original mesh and coarsens/refines the mesh in stages.
The coarsening is limited by a specified minimum number of cells at the most coarse level.

The agglomeration of cells is performed by the method specified by the agglomerator
keyword. The tutorials all use the default faceAreaPair method. The agglomeration can
be controlled using the following optional entries, most of which default in the tutorials.

• cacheAgglomeration: switch specifying caching of the agglomeration strategy (de-
fault true).

• nCellsInCoarsestLevel: approximate mesh size at the most coarse level in terms
of the number of cells (default 10).

• directSolveCoarset: use a direct solver at the coarsest level (default false).

• mergeLevels: keyword controls the speed at which coarsening or refinement is
performed; the default is 1, which is safest, but for simple meshes, the solution speed
can be increased by coarsening/refining 2 levels at a time, i.e. setting mergeLevels
2.
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Smoothing is specified by the smoother as described in section 4.6.4. The number
of sweeps used by the smoother at different levels of mesh density are specified by the
following optional entries.

• nPreSweeps: number of sweeps as the algorithm is coarsening (default 0).

• preSweepsLevelMultiplier: multiplier for the number of sweeps between each
coarsening level (default 1).

• maxPreSweeps: maximum number of sweeps as the algorithm is coarsening (default
4).

• nPostSweeps: number of sweeps as the algorithm is refining (default 2).

• postSweepsLevelMultiplier: multiplier for the number of sweeps between each
refinement level (default 1).

• maxPostSweeps: maximum number of sweeps as the algorithm is refining (default
4).

• nFinestSweeps: number of sweeps at finest level (default 2).

4.6.6 Solution under-relaxation
The fvSolution file usually includes a relaxationFactors sub-dictionary which controls under-
relaxation. Under-relaxation is used to improve stability of a computation, particularly
for steady-state problems. It works by limiting the amount which a variable changes from
one iteration to the next, either by manipulating the matrix equation prior to solving for
a field, or by modifying the field afterwards. An under-relaxation factor α, 0 < α ≤ 1
specifies the amount of under-relaxation, as described below.

• No specified α: no under-relaxation.

• α = 1: guaranteed matrix diagonal equality/dominance.

• α decreases, under-relaxation increases.

• α = 0: solution does not change with successive iterations.

An optimum choice of α is one that is small enough to ensure stable computation but
large enough to move the iterative process forward quickly; values of α as high as 0.9
can ensure stability in some cases and anything much below, say, 0.2 can be prohibitively
restrictive in slowing the iterative process.

Relaxation factors for under-relaxation of fields are specified within a field sub-dictionary;
relaxation factors for equation under-relaxation are within a equations sub-dictionary. An
example is shown below from a case with the incompressibleFluid solver module running
in steady-state mode. The factors are specified for pressure p, pressure U, and turbulent
fields grouped using a regular expression.

54 relaxationFactors
55 {
56 fields
57 {
58 p 0.3;
59 }
60 equations
61 {
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62 U 0.7;
63 "(k|omega|epsilon).*" 0.7;
64 }
65 }
66
67 // ************************************************************************* //

For a transient case with the incompressibleFluid module, under-relaxation would simply
slow convergence of the solution within each time step. Instead, the following setting is
generally adopted to ensure diagonal equality which is generally required for convergence
of a matrix equation.

60 relaxationFactors
61 {
62 equations
63 {
64 ".*" 1;
65 }
66 }
67
68
69 // ************************************************************************* //

4.6.7 SIMPLE and PIMPLE algorithms
Most fluid solver modules use algorithms to couple equations for mass and momentum
conservation known as:

• SIMPLE (semi-implicit method for pressure-linked equations);

• PIMPLE, a combination of PISO (pressure-implicit split-operator) and SIMPLE.
Within in time, or solution, step, the algorithms solve a pressure equation, to enforce mass
conservation, with an explicit correction to velocity to satisfy momentum conservation.
They optionally begin each step by solving the momentum equation — the so-called
momentum predictor.

While all the algorithms solve the same governing equations (albeit in different forms),
the algorithms principally differ in how they loop over the equations. The looping is
controlled by input parameters that are listed below. They are set in a dictionary named
after the algorithm, i.e. SIMPLE, or PIMPLE.

• nCorrectors: used by PIMPLE, sets the number of times the algorithm solves the
pressure equation and momentum corrector in each step; typically set to 2 or 3.

• nNonOrthogonalCorrectors: used by all algorithms, specifies repeated solutions
of the pressure equation, used to update the explicit non-orthogonal correction,
described in section 4.5.4, of the Laplacian term ∇ • ((1/A)∇p); typically set to 0
for steady-state and 1 for transient cases.

• nOuterCorrectors: used by PIMPLE, it enables looping over the entire system of
equations within on time step, representing the total number of times the system is
solved; must be ≥ 1 and is typically set to 1.

• momentumPredictor: switch that controls solving of the momentum predictor; typ-
ically set to off for some flows, including low Reynolds number and multiphase.

4.6.8 Pressure referencing
In a closed incompressible system, pressure is relative: it is the pressure range that matters
not the absolute values. In these cases, the solver sets a reference level of pRefValue in cell
pRefCell. These entries are generally stored in the SIMPLE or PIMPLE sub-dictionary.
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4.7 Case management tools
There are a set of applications and scripts that help with managing case files and help
the user find and set keyword data entries in case files. The tools are described in the
following sections.

4.7.1 General file management
There are some tools for general management of case files, including foamListTimes, foam-
CleanCase and foamCloneCase. A case includes configuration files for various processes
such as meshing, case initialisation, simulation and post-processing. Each process gener-
ates new data files in various directories, e.g. mesh data is stored in constant/polyMesh,
CFD results in time directories, and further post-processing in a postProcessing directory.

The foamListTimes utility lists the time directories for a case, omitting the 0 directory
by default. Prior to re-running a CFD simulation, it can be useful to delete the results
from the previous simulation. The foamListTimes utility provides this function through the
-rm option which deletes the listed time directories, executed by the following command.

foamListTimes -rm

The foamCleanCase script aims to reset the case files to their original state, removing
all files generated during a workflow including the meshing, post-processing. It deletes
directories including: postProcessing and VTK; the constant/polyMesh directory; processor
directories from parallel decomposition; and, dynamicCode for run-time compiled code.
The script is simply run as follows.

foamCleanCase

The foamCloneCase script creates a new case, by copying the 0, system and constant
directories from an existing case. The copied case is ready to run since the mesh is
copied through the constant directory. If the original case is set up to run in parallel, the
processor directories can also be copied using the -processor option. The basic command
is executed simply as follows, where oldCase refers to an existing case directory.

foamCloneCase oldCase newCase

4.7.2 The foamDictionary utility
The foamDictionary utility offers several options for printing, editing and adding keyword
entries in case files. The utility is executed with a case dictionary file as an argument,
e.g. from within a case directory on the fvSchemes file.

foamDictionary system/fvSchemes

Without options, the utility prints the entries from the file, removing comments, e.g. as
follows for the fvSchemes file in the pitzDailySteady tutorial case.
FoamFile
{

format ascii;
class dictionary;
location "system";
object fvSchemes;

}
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ddtSchemes
{

default steadyState;
}

gradSchemes
{

default Gauss linear;
grad(U) cellLimited Gauss linear 1;

}

divSchemes
{

default none;
div(phi,U) bounded Gauss linearUpwind grad(U);
turbulence bounded Gauss limitedLinear 1;
div(phi,k) $turbulence;
div(phi,epsilon) $turbulence;
div(phi,omega) $turbulence;
div(phi,v2) $turbulence;
div((nuEff*dev2(T(grad(U))))) Gauss linear;
div(nonlinearStress) Gauss linear;

}

laplacianSchemes
{

default Gauss linear corrected;
}

interpolationSchemes
{

default linear;
}

snGradSchemes
{

default corrected;
}

The output includes the macros before expansion, indicated by the $ symbol, e.g. $tur-
bulence. The macros can be expanded by the -expand option as shown below

foamDictionary -expand system/fvSchemes

The -entry option prints the entry for a particular keyword, expanding the macros
by default, e.g. divSchemes in the example below

foamDictionary -entry divSchemes system/fvSchemes

The example clearly extracts the divSchemes dictionary.
divSchemes
{

default none;
div(phi,U) bounded Gauss linearUpwind grad(U);
turbulence bounded Gauss limitedLinear 1;
div(phi,k) $turbulence;
div(phi,epsilon) $turbulence;
div(phi,omega) $turbulence;
div(phi,v2) $turbulence;
div((nuEff*dev2(T(grad(U))))) Gauss linear;
div(nonlinearStress) Gauss linear;

}

The “/” syntax allows access to keywords with levels of sub-dictionary. For example,
the div(phi,U) keyword can be accessed within the divSchemes sub-dictionary by the
following command.
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foamDictionary -entry "divSchemes/div(phi,U)" system/fvSchemes

The example returns the single divSchemes/div(phi,U) entry.

div(phi,U) bounded Gauss linearUpwind grad(U);

The -value option prints only the entry.

foamDictionary -entry "divSchemes/div(phi,U)" -value system/fvSchemes

The example removes the keyword and terminating semicolon, leaving just the data.

bounded Gauss linearUpwind grad(U)

The -keywords option prints only the keywords.

foamDictionary -entry divSchemes -keywords system/fvSchemes

The example produces a list of keywords inside the divSchemes dictionary.

default
div(phi,U)
div(phi,k)
div(phi,epsilon)
div(phi,omega)
div(phi,v2)
div((nuEff*dev2(T(grad(U)))))
div(nonlinearStress)

foamDictionary can set entries with the -set option. If the user wishes to change the
div(phi,U) to the upwind scheme, they can enter the following.

foamDictionary -entry "divSchemes/div(phi,U)" \
-set "bounded Gauss upwind" system/fvSchemes

An alternative “=” syntax can be used with the -set option which is particularly useful
when modifying multiple entries:

foamDictionary -set "startFrom=startTime, startTime=0" \
system/controlDict

foamDictionary can add entries with the -add option. If the user wishes to add an
entry named turbulence to divSchemes with the upwind scheme, they can enter the
following.

foamDictionary -entry "divSchemes/turbulence" \
-add "bounded Gauss upwind" system/fvSchemes
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4.7.3 The foamSearch script
The foamSearch script, demonstrated extensively in section 4.5, uses foamDictionary to
extract and sort keyword entries from all files of a specified name in a specified dictionary.
The -c option counts the number of entries of each type, e.g. the user could searche for
the choice of solver for the p equation in all the fvSolution files in the tutorials.

foamSearch -c $FOAM_TUTORIALS fvSolution solvers/p/solver

The search shows GAMG to be the most common choice in all the tutorials.

64 solver GAMG;
2 solver PBiCGStab;

26 solver PCG;
5 solver smoothSolver;

4.7.4 The foamGet script
The foamGet script copies configuration files into a case quickly and conveniently. The
user must be inside a case directory to run the script or identify the case directory with
the -case option. Its operation can be described using the pitzDailySteady case described
in section 2.1. The example begins by copying the case directory as follows:

run
cp -r $FOAM_TUTORIALS/modules/incompressibleFluid/pitzDailySteady .

The mesh is generated for the case by going into the case directory and running blockMesh:

cd pitzDailySteady
blockMesh

The user might decide before running the simulation to configure some automatic post-
processing as described in section 7.2. The user can list the pre-configured function objects
by the following command.

foamPostProcess -list

From the output, the user could select the patchFlowRate function to monitor the flow
rate at the outlet patch. The patchFlowRate configuration file can be copied into the
system directory using foamGet:

foamGet patchFlowRate

In order to monitor the flow through the outlet patch, the patch entry in patchFlowRate
file should be set as follows:

patch outlet;

The patchFlowRate configuration is then included in the case by adding to a functions file
system directory, as discussed in section 7.2.
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functions
{

...
//#includeFunc writeObjects(kEpsilon:G) // existing entry
#includeFunc patchFlowRate

}

4.7.5 The foamInfo script
The foamInfo script provides quick information and examples relating to thing in Open-
FOAM that the user can “select”. The selections include models (including boundary
conditions and packaged function objects), solver modules, applications and scripts. For
example, foamInfo prints information about the incompressibleFluid solver module by typ-
ing the following:

foamInfo incompressibleFluid

Information for the flowRateInletVelocity boundary condition can similarly be obtained by
typing the following command.

foamInfo flowRateInletVelocity

The output includes: the location of the source code header file for this boundary con-
dition; the description and usage details from the header file; a list of other models of
the same type, i.e. other boundary conditions; and, a list of example cases that use the
boundary condition. This example is demonstrated in section 2.1.17.

When the user requests information about a model with foamInfo, it attempts to
provide a list of other models in the “family”. For example, if the user requests information
about the kEpsilon turbulence model by

foamInfo kEpsilon

the output includes the following

Model
This appears to be the 'kEpsilon' model of the 'RAS' family.
The models in the 'RAS' family are:
+ kEpsilon
+ kOmega
+ kOmega2006
+ kOmegaSST
+ kOmegaSSTLM
+ kOmegaSSTSAS
+ LaunderSharmaKE
+ LRR
+ RAS
+ realizableKE
+ RNGkEpsilon
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+ SpalartAllmaras
+ SSG
+ v2f

It provides fairly complete lists for fvModels and fvConstraints, which can be demonstrated
by typing the following commands.

foamInfo clouds
foamInfo limitTemperature

It also lists options used in input files, e.g. for Function1 entries in boundary conditions,
searchableSurface entries in the configuration of snappyHexMesh. Users could try searching
for specific models within those families or the families themselves, e.g.

foamInfo linearRamp
foamInfo triSurfaceMesh
foamInfo Function1
foamInfo searchableSurfaces

4.7.6 The foamToC utility
The foamToC utility lists all the options in OpenFOAM which the user can select through
input files. The functionality overlaps with foamInfo to some extent but foamToC produces
more definitive reporting since it is an OpenFOAM application which directly interrogates
the run-time selection tables in the compiled libraries. The “ToC” in the name is an
abbreviation for “Table of Contents.”

As well as providing general options to interrogate anything in OpenFOAM, foam-
ToC includes specific options that replicate most of the “-list...” options included in
application solvers prior to v11. These options included: -listScalarBCs and -list-
VectorBCs to list boundary conditions; -listFunctionObjects to list functionObjects;
-listFvModels to list fvModels; and, -listFvConstraints to list fvConstraints. The
equivalent options in foamToC are listed below, with an additional -solvers option:

• -scalarBCs and -vectorBCs to list boundary conditions;

• -functionObjects to list functionObjects;

• -fvModels to list fvModels;

• -fvConstraints to list fvConstraints; and,

• -solvers to list the solver modules.

For example, with the last option, foamToC prints the following output

>> foamToC -fvConstraints

fvConstraints:
Contents of table fvConstraint:

bound libfvConstraints.so
fixedTemperatureConstraint libfvConstraints.so
fixedValueConstraint libfvConstraints.so
limitMag libfvConstraints.so
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limitPressure libfvConstraints.so
limitTemperature libfvConstraints.so
meanVelocityForce libfvConstraints.so
patchMeanVelocityForce libfvConstraints.so
zeroDimensionalFixedPressure libfvConstraints.so

Each fvConstraint is listed in the left column with the library to which it belongs in
the right column. The options listed above essentially invoke the more general -table
option that lists the contents of a run-time selection table. The -fvConstraints option
is equivalent to the following command which lists the items in the fvConstraint table.

foamToC -table fvConstraint

All the selection tables in OpenFOAM are listed by running foamToC with the -tables
option as shown below.

foamToC -tables

This is also the default response of foamToC without options, i.e.

foamToC

By default foamToC loads all the libraries in OpenFOAM to produce a complete list of
tables. The user can control the libraries that are loaded with the following options.

• -noLibs: only loads the core libOpenFOAM.so library by default.

• -solver <solver>: only loads libraries associated with the specified solver module
<solver>.

• -libs '("lib1.so" ... "libN.so")': additionally pre-loads specified libraries,
e.g. customised libraries of the user.

An important use of foamToC is to enable users to find alternative models to the one
currently configured for their case. The challenge is to find the table that contains the
models they wish to list. The -search option helps with this, since it takes an entry, e.g.
a model, and reports the table in which it belongs. For example, if the user was familiar
with the BirdCarreau model for viscosity and wished to list alternative non-Newtonian
models, they could first issue the following command.

>> foamToC -search BirdCarreau

BirdCarreau is in table
generalisedNewtonianViscosityModel libmomentumTransportModels.so

Having identified the table, the user can then list its contents using the -table option.

>> foamToC -table generalisedNewtonianViscosityModel

Contents of table generalisedNewtonianViscosityModel:
BirdCarreau libmomentumTransportModels.so
Casson libmomentumTransportModels.so
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CrossPowerLaw libmomentumTransportModels.so
HerschelBulkley libmomentumTransportModels.so
Newtonian libmomentumTransportModels.so
powerLaw libmomentumTransportModels.so
strainRateFunction libmomentumTransportModels.so

If the user wished to list the solver modules, they can run

foamToC -solvers

which is equivalent to running

foamToC -table solver

With turbulence models, a search for kEpsilon lists the following set of tables (the
corresponding libraries are not shown here).

kEpsilon is in table
RAS

RAScompressibleMomentumTransportModel
RASincompressibleMomentumTransportModel
RASphaseCompressibleMomentumTransportModel
RASphaseIncompressibleMomentumTransportModel

The output indicates the model exists in different tables corresponding to both incom-
pressible and compressible flows, and both single phase and multi-phase flows (phase
indicates multi-phase in the table name). For single phase, incompressible flows, the
available RAS turbulence models can be listed as follows.

foamToC -table RASincompressibleMomentumTransportModel

4.7.7 The foamUnits script
The foamUnits utility provides details of named units and dimensional units, described in
sections 4.2.7 and 4.2.6, respectively. Users can list the named units by running with the
-list option, i.e.

foamUnits -list

It returns the following:

Basic units: [kg] [m] [s] [K] [kmol] [A] [Cd]
Derived units: [Hz] [N] [Pa] [J] [W]
...

Similarly, they can list dimensional units with the addition of the -dimension option as
follows:

foamUnits -list -dimensions
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It returns the following:

Base dimensions: [mass] [length] [time] [temperature] [moles] ...
Derived dimensions:

[area] [volume] [rate] [velocity] [momentum]
...

They can print the details of any unit, e.g. calorie [cal] by

foamUnits cal

which returns the base units and conversion factor:

Unit [cal]
+ Base unit = [J]
+ Conversion factor = 4.184

They can similarly print details of any named dimension, e.g. [energ], with the -dimension
option

foamUnits -dimension energy

It produces the following:

Dimension [energy]
+ Base dimensions = [force*length]

Finally, the details of all named units or dimensional units can be printed by foamUnits
using the -all option, with or without the -dimension option.

4.7.8 The foamFind script
The foamFind script searches for files in OpenFOAM. It can simply provide the location
of files by printing their filename including the path. Alternatively it can print the entire
file into the terminal, print lines matching a search string or open the file in a text editor.
The script is principally used to locate source code files (so perhaps does not fall much
under “Case Management”, the title of this section of the guide).

For example, if a user wished to locate the file wallHeatFlux.C, they could simply type

foamFind wallHeatFlux.C

This would simply return the location of the file, e.g.

File: $FOAM_SRC//functionObjects/field/wallHeatFlux/wallHeatFlux.C

The -print option would additionally print the contents of the file to the terminal; the
argument positioning is flexible:

foamFind -print wallHeatFlux.C
foamFind wallHeatFlux.C -print # Alternatively
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To view the printed file slowly, the user could pipe the output to the UNIX less command

foamFind wallHeatFlux.C -print | less

less provides some keystroke to scroll, search and quit:

• click the space bar, page up, page down keys to scroll;

• enter line number after “:” to jump to a line;

• enter “/” followed by a string to search for the string, e.g. /calc to search for
“calc”;

• enter “q” to quit.

A file can also be opened in a file editor using the -editor option. For this option
to work, the user’s environment must include an $EDITOR environment variable set to
the user’s editor of choice. For example, to set the gedit editor, the user could add the
following to their $HOME/.bashrc file:

export EDITOR=gedit

The following command would then open the wallHeatFlux.C file in the gedit editor:

foamFind wallHeatFlux.C -edit

The foamFind script includes the -search option to print lines of a file matching a
string, e.g. to search “heat”:

foamFind wallHeatFlux.C -search heat

The -isearch option make the search case insensitive, e.g. so would also match “Heat”
(upper case) in the example.

foamFind wallHeatFlux.C -isearch heat

The -numbers option writes output with line numbers, e.g.

foamFind wallHeatFlux.C -isearch heat -numbers

The source code is ultimately compiled with wmake as described in section 3.2. The
instructions for wmake are included in the files and options files in an associated Make
directory. The foamFind script include two options, -files and -options, which return
the files and options files, respectively, associated with the source code file. The following
command would locate the options file associated with wallHeatFlux:

foamFind wallHeatFlux.C -options

By default, foamFind is searching for source code files so begins its search from the
$FOAM_SRC directory within the OpenFOAM installation. Alternative directories for
the search can be specified with the following options:
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• -applications: the $FOAM_APP (applications) directory;

• -modules: the $FOAM_MODULES (modules) directory;

• -tutorial: the $FOAM_TUTORIALS (tutorials) directory;

The -dir option also allows the user to specify any other directory.
The foamFind script could find multiple files of the same name in a single search, e.g.

looking for createFields.H in the $FOAM_APP directory by:

foamFind -applications createFields.H -print

This returns a selection of over 20 files, with each one numbered. The user can then enter
the number of one particular file, or ENTER to print them all.

4.7.9 The foamMergeCase script
There is often a need to run several CFD simulations which are generally similar but
include small differences. The foamMergeCase script is designed to help maintain cases
in these circumstances. It operates on the basis that there first exists a working “source”
case from which “variant” cases are created.

A variant case only contains files which include modifications from those in the source
case, organised in the same directory structure The files are given a special .orig extension
and only need to include the modified entries. The foamMergeCase script can then be
executed from within the variant case directory with the source case directory provided
as an argument.

There is an accompanying foamUnMergeCase script which removes files that the foam-
MergeCase scripts copies from the source case. The variant case should include their
own Allrun and Allclean scripts which include the respective foamMergeCase and foamUn-
MergeCase commands.

Let us provide an example that uses the pitzDaily case as the source. The variant
case, pitzDailyWater, will be identical to pitzDaily except that it will run with a kinematic
viscosity of ν = 10−6 m2 s−1 = 1 cSt (centistokes).

The first step of setting up a variant case is to copy the source case and then delete
directories and files that remain unchanged during the merge. In our example, we can
start from the run directory using the run alias, copy the pitzDaily case, renaming it
pitzDailyWater, and then change into that directory.

run
cp -r $FOAM_TUTORIALS/incompressibleFluid/pitzDaily pitzDailyWater
cd pitzDailyWater

The user should then delete the directories and files that are not going to be merged, as
follows.

rm -rf 0 system constant/momentumTransport

The kinematic viscosity is configured by the nu in the physicalProperties file in the constant
directory. The modification to nu must be stored in a file named physicalProperties.orig in
the corresponding directory. Therefore, the user should first rename physicalProperties to
physicalProperties.orig.
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mv constant/physicalProperties constant/physicalProperties.orig

The physicalProperties.orig should then be opened in an editor. The keyword entry for
viscosityModel should be deleted. The entry for nu should be changed to the following
(using cSt units described in section 4.7.8).

nu 1 [cSt];

The current case directory is now the complete variant case to the pitzDaily source case.
A simulation can now be run by first merging in the pitzDaily source case using foam-
MergeCase as follows.

foamMergeCase $FOAM_TUTORIALS/incompressibleFluid/pitzDaily

The script copies across the relevant files from pitzDaily, while merging the changes in
physicalProperties.orig into the physicalProperties file. The case runs with the Allrun script.

./Allrun

The case results can be visualised using ParaView to demonstrate it all works as expected.
The user can subsequently use foamUnMergeCase, a complementary script to foam-

MergeCase, to reset the pitzDailyWater case to its original “variant” form, containing only
the physicalProperties.orig file. The case should first be cleaned to removed results, log
files and post-processed data using the foamCleanCase script.

foamCleanCase

The case directory is then reduced to the basic 0, system and constant directories and the
Allrun script. The case can then be “un-merged” by running the following command.

foamUnMergeCase $FOAM_TUTORIALS/incompressibleFluid/pitzDaily

This returns the case directort to its initial state, with only the constant directory con-
taining the physicalProperties.orig file.

As discussed earlier, it is recommended that the Allrun and Allclean scripts contain the
respective foamMergeCase and foamUnMergeCase commands. Therefore, the user should
open the Allrun in an editor and add the foamMergeCase command as shown below.

1 #!/bin/sh
2 cd ${0%/*} || exit 1 # Run from this directory
3
4 # Source tutorial run functions
5 . $WM_PROJECT_DIR/bin/tools/RunFunctions
6
7 foamMergeCase $FOAM_TUTORIALS/incompressibleFluid/pitzDaily
8
9 runApplication blockMesh -dict $FOAM_TUTORIALS/resources/blockMesh/pitzDaily

10 runApplication foamRun

The source case does not include an Allclean script, so the user should copy one using the
foamGet script as follows.

foamGet Allclean
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The foamUnMergeCase command should be added after the cleanCase function, otherwise
the un-merging will be incomplete. An example is shown below.

1 #!/bin/sh
2
3 # Run from this directory
4 cd "${0%/*}" || exit 1
5
6 # Source tutorial clean functions
7 . "$WM_PROJECT_DIR/bin/tools/CleanFunctions"
8
9 # ...

10 cleanCase
11
12 foamMergeCase $FOAM_TUTORIALS/incompressibleFluid/pitzDaily

The case can now be run and cleaned by executing the Allrun and Allclean scripts
respectively.

./Allrun

./Allclean
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Chapter 5

Mesh generation and conversion

This chapter describes all topics relating to the creation of meshes in OpenFOAM: sec-
tion 5.1 gives an overview of the way a mesh is be described in OpenFOAM; section 5.2
lists the basic data files that describe a mesh; section 5.3 discusses mesh boundaries and
introduces boundary conditions; section 5.4 covers the blockMesh utility for generating
simple meshes of blocks of hexahedral cells; section 5.5 covers the snappyHexMesh util-
ity for generating complex meshes of hexahedral and split-hexahedral cells automatically
from triangulated surface geometries; section 5.7 describes the options for conversion of
a mesh that has been generated by a third-party product into a format that OpenFOAM
can read.

5.1 Mesh description
This section provides a specification of the way OpenFOAM describes a mesh. The mesh
is an integral part of the numerical solution and must satisfy certain criteria to ensure a
valid, and hence accurate, solution. OpenFOAM defines a mesh of arbitrary polyhedral
cells in 3-D, bounded by arbitrary polygonal faces, i.e. the cells can have an unlimited
number of faces where, for each face, there is no limit on the number of edges nor any
restriction on its alignment. This flexible description of a mesh offers great freedom in
mesh generation and manipulation when the geometry of the domain is complex.

An OpenFOAM mesh begins with points (or vertices). Each point is a location in
3D space, defined by a vector. The set of points forms a list where each point can be
indexed by its position in the list, starting from zero. The list does not contain points
that are unused.

The points are used to from mesh faces, where each face is defined as an ordered list
of points, described by their where a point is referred to by its label. The ordering of
point labels in a face is such that each two neighbouring points are connected by an edge,
i.e. you follow points as you travel around the circumference of the face. The set of faces
forms a list where each face is referred to by its label, representing its position in the list.

Each face can be characterised by a vector whose direction is normal to the face. The
normal vector follows the right-hand rule, i.e. looking towards a face, if the numbering of
the points follows a clockwise path, the normal vector points away from you, as shown in
Figure 5.1. Note that faces can be warped, i.e. the points of the face may not necessarily
lie on a plane. There are two types of face, described below.

• Internal faces, which connect two cells (and it can never be more than two). For
each internal face, the ordering of the point labels is such that the face normal
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Figure 5.1: Face area vector from point numbering on the face

points into the cell with the larger label, i.e. for cells labelled ‘2’ and ‘5’, the normal
points into ‘5’.

• Boundary faces, which belong to one cell since they coincide with the boundary
of the domain. A boundary face is therefore addressed by one cell(only) and a
boundary patch. The ordering of the point labels is such that the face normal
points outside of the computational domain.

A cell is a list of faces in arbitrary order. Under normal circumstances, cells must
have the properties listed below.

• The cells must be contiguous,i.e. completely cover the computational domain and
must not overlap one another.

• Every cell must be closed geometrically, such that when all face area vectors are
oriented to point outwards of the cell, their sum should equal the zero vector to
machine accuracy;

• Every cell must be closed topologically such that all the edges in a cell are used by
exactly two faces of the cell in question.

The boundary is formed by the boundary faces. It should be closed, i.e. the sum all
boundary face area vectors equates to zero to machine tolerance. It is split into regions
known as patches so that different boundary conditions can be applied to different parts
of the boundary. A patch is defined by the labels of the faces it contains.

5.2 Mesh files
When a mesh is written out by OpenFOAM, the data files go into a polyMesh sub-
directory. Usually the polyMesh directory is written to the the constant directory, but
simulations with dynamic meshes (e.g. mesh motion, refinement, etc.) write the modified
meshes into time directories along with the field data files.

The data files are based around faces rather than cells. Each face is therefore assigned
an ‘owner’ cell and ‘neighbour’ cell so that the connectivity across a given face can simply
be described by the owner and neighbour cell labels. In the case of boundaries, there is
no neighbour cell. With this in mind, the I/O specification consists of the following files:
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points a list of vectors describing the cell vertices, where the first vector in the list repre-
sents vertex 0, the second vector represents vertex 1, etc.;

faces a list of faces, each face being a list of indices to vertices in the points list, where
again, the first entry in the list represents face 0, etc.;

owner a list of owner cell labels, starting with the owner cell of face 0, then 1, 2, . . .

neighbour a list of neighbour cell labels;

boundary a list of patches, containing a dictionary entry for each patch, declared using
the patch name.

Critically, the faces list is ordered so that all internal faces are listed first, followed by the
boundary faces. The boundary faces are themselves ordered so that they begin with the
faces in the first patch, followed by the second, etc. As a consequence the patch entries
in the boundary file are very compact, e.g.

inlet
{

type patch;
nFaces 30;
startFace 24170;

}

Due to the face ordering, the patch faces are simply described by: startFace, the index
into the face list of the first face in the patch; and, nFaces, the number of faces in the
patch.

5.3 Mesh boundary
As we saw in section 5.2, the domain boundary is defined by patches within the mesh,
listed within the boundary mesh file. Each patch includes a type entry which can apply
a geometric constraint to the patch. These geometric constraints include conditions that
represent a geometric approximation, e.g. a symmetry plane, and conditions which form
numerical connections between patches, e.g. a cyclic (or periodic) boundary. An example
boundary file is shown below which includes some patches with geometric constraints.

16
17 5
18 (
19 top
20 {
21 type wall;
22 inGroups List<word> 1(wall);
23 nFaces 60;
24 startFace 3510;
25 }
26 inlet
27 {
28 type patch;
29 nFaces 30;
30 startFace 3570;
31 }
32 outlet
33 {
34 type patch;
35 nFaces 30;
36 startFace 3600;
37 }
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38 bottom
39 {
40 type symmetryPlane;
41 inGroups List<word> 1(symmetryPlane);
42 nFaces 60;
43 startFace 3630;
44 }
45 frontAndBack
46 {
47 type empty;
48 inGroups List<word> 1(empty);
49 nFaces 3600;
50 startFace 3690;
51 }
52 )
53
54 // ************************************************************************* //

A type entry is specified for every patch (inlet, outlet, etc.), with types assigned that
include patch, wall, symmetryPlane and empty. Some patches also include an inGroups
entry which is discussed in section 5.3.6.

5.3.1 Generic patch and wall
The patch types specified in the boundary file, which are not associated with a geometric
constraint are the generic patch and wall. The patch type is assigned to open bound-
aries such as an inlet or outlet which does not involve any special handling of geometric
approximation or numerical connections.

The wall type also provides no special geometric or numerical handling, but is used
for patches which coincide with a solid wall. The wall ‘tag’ is required by some models,
e.g. wall functions in turbulence modelling which require the distance to nearest wall.

5.3.2 1D/2D and axi-symmetric problems
OpenFOAM is designed as a code for 3D space and defines all meshes as such. However,
1D and 2D and axi-symmetric problems can be simulated in OpenFOAM by generating
a mesh in 3 dimensions and applying special boundary conditions on any patch in the
plane(s) normal to the direction(s) of interest. 1D and 2D problems apply the empty
patch type to the relevant patches. Often the two regions of the boundary, on the ‘front’
and ‘back’ of the domain, are combined into a single patch, as in the frontAndBack patch
in the quoted example above.

For axi-symmetric cases, the geometry, e.g. a cylinder, is approximated by a wedge-
shaped mesh of small angle (e.g. 1◦) and 1 cell thick, running along the centre line,
straddling one of the coordinate planes, as shown in Figure 5.2. The axi-symmetric
wedge planes must be specified as separate patches of wedge type. The generation of
wedge geometries for axi-symmetric problems is discussed in section 5.4.10.

5.3.3 Symmetry condition
A symmetry plane is a boundary condition that imagines the solution within the domain
is ‘mirrored’ across the boundary. It can therefore be applied reliably to a domain with
a plane of symmetry where the flow is believed to be symmetric across the plane. When
the flow involves something like vortex shedding that breaks symmetry, the condition is
less applicable.

There are two patch types relating to symmetry. Firstly, the symmetryPlane condition
is a pure symmetry plane which can only be applied to a patch which is perfectly planar.
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Figure 5.2: Axi-symmetric geometry using the wedge patch type.

There is then a symmetry condition, which can be applied to any patch, including those
that are non-planar.

5.3.4 Cyclic conditions
The cyclic boundary conditions form a numerical connections between patches that are
physically disconnected. The cyclic condition connects patches which have the same area
to within a tolerance given by the matchTolerance keyword. Each patch specifies the
name of the patch to which it connects through the neighbourPatch keyword. The
condition can transform the field between patches, e.g. by a rotation, so the patches do
not require the same orientation.

OpenFOAM also includes non-conformal coupling (NCC) which connects regions of
a domain with independent meshes. It is and is used particularly for cases when one
or more regions are moving, e.g. to simulate rotating geometry. Non-conformal coupling
uses the nonConformalCyclic condition which are usually generated with the createNon-
ConformalCouples utility. NCC examples can be located by searching for the createNon-
ConformalCouples utility in Allrun scripts in the tutorials directory, e.g. by running

find $FOAM_TUTORIALS -name Allrun | \
xargs grep -l createNonConformalCouples

5.3.5 Processor patches
Running applications in parallel is described in section 3.4. It involves decomposition
of the mesh using decomposePar as described in section 3.4.1. Decomposition splits the
domain which creates new patches at the exposed faces. Those patches are assigned the
processor type which forms a numerical connection between sub-domains. Each processor
patch entry in the boundary file includes a myProcNo entry for the processor (sub-domain)
index and a neighbProcNo entry for the index of the matching patch on the sub-domain
it connects with.
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5.3.6 Patch groups
The boundary file example shows some patches include an inGroups entry, e.g. the top
patch:

top
{

type wall;
inGroups List<word> 1(wall);
nFaces 60;
startFace 3510;

}

The inGroups entry is optional. It specifies one or more patch groups to which a patch
can belong. A patch group is specified by a name which the user can choose. Group names
can be used to specify boundary conditions in field files, simplifying the configuration.
For example, if all inlet patches can be included in an inlet group, then one inlet entry
can specify a boundary condition for all the patches.

Every non-generic patch, i.e. one which is not patch type, is included in a patch group

of the same name as its type. For example, a patch of type wall is included in a wall
group, one of type symmetry is included in a symmetry group, etc. The use of group names
to specify boundary conditions in described further in chapter 6.

5.3.7 Constraint type examples
The user can scan the tutorials for mesh generation configuration files, e.g. blockMeshDict
for blockMesh (see section 5.4) and snappyHexMeshDict for snappyHexMesh (see section 5.5,
for examples of different types being used. The following example provides documentation
and lists cases that use the symmetryPlane condition.

foamInfo -a symmetryPlane

The next example searches for snappyHexMeshDict files that specify the wall condition.

find $FOAM_TUTORIALS -name snappyHexMeshDict | \
xargs grep -El "type[\t ]*wall"

5.4 Mesh generation with the blockMesh utility
This section describes the mesh generation utility, blockMesh, supplied with OpenFOAM.
The blockMesh utility creates parametric meshes with grading and curved edges. The
mesh is generated from a dictionary file named blockMeshDict located in the system di-
rectory of a case. blockMesh reads this dictionary, generates the mesh and writes out the
mesh data to points, faces, cells and boundary files in the polyMesh directory.

The principle behind blockMesh is to decompose the domain geometry into a set of 1 or
more 3D hexahedral blocks. Edges of the blocks can be straight lines, arcs or splines. The
mesh is ostensibly specified as a number of cells in each direction of the block, sufficient
information for blockMesh to generate the mesh data.
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5.4.1 Overview of a blockMeshDict file
The blockMeshDict file is a dictionary including keywords described below.

• convertToMeters: scaling factor for the vertex coordinates, e.g. 0.001 scales to
mm.

• vertices: list of vertex coordinates, see section 5.4.2.

• edges: optional entry to describe curved geometry, see section 5.4.3.

• blocks: ordered list of vertex labels and mesh size, see section 5.4.4.

• boundary: sub-dictionary of boundary patches, see section 5.4.6.

• defaultPatch: optional entry describing a default patch, see section 5.4.6.

• mergePatchPairs: optional list of patches to be merged, see section 5.4.7.

5.4.2 The vertices
The vertices of the blocks of the mesh are given next as a standard list named vertices.
An example set of vertices, corresponding to a block in Figure 5.3, is provided below.

vertices
(

( 0 0 0 ) // vertex number 0
( 1 0 0.1) // vertex number 1
( 1.1 1 0.1) // vertex number 2
( 0 1 0.1) // vertex number 3
(-0.1 -0.1 1 ) // vertex number 4
( 1.3 0 1.2) // vertex number 5
( 1.4 1.1 1.3) // vertex number 6
( 0 1 1.1) // vertex number 7

);

The convertToMeters keyword specifies a scaling factor by which all vertex coordinates
in the mesh description are multiplied. For example,

convertToMeters 0.001;

means that all coordinates are multiplied by 0.001, i.e. the values quoted in the blockMesh-
Dict file are in mm.

5.4.3 The edges
Each edge joining 2 vertex points is assumed to be straight by default. However any edge
may be specified to be curved by entries in a list named edges. The list is optional; if
the geometry contains no curved edges, it may be omitted.

Each entry for a curved edge begins with a keyword specifying the type of curve from
those listed below.

• arc: a circular arc with a single interpolation point or angle + axis (see below).
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• spline: spline curve using a list of interpolation points

• polyLine: a set of lines with list of interpolation points

• BSpline: a B-spline curve with list of interpolation points

• line: a straight line, the default which requires no edge specification.

The keyword is then followed by the labels of the 2 vertices that the edge connects.
Following that, interpolation points must be specified through which the edge passes. For
an arc, either of the following is required: a single interpolation point, which the circular
arc will intersect; or an angle and rotation axis for the arc. For spline, polyLine and
BSpline, a list of interpolation points is required. For our example block in Figure 5.3
we specify an arc edge connecting vertices 1 and 5 as follows through the interpolation
point (1.1, 0.0, 0.5):

edges
(

arc 1 5 (1.1 0.0 0.5)
);

For the angle and axis specification of an arc, the syntax is of the form:

edges
(

arc 1 5 25 (0 1 0) // 25 degrees, y-normal
);

5.4.4 The blocks
The block definitions are contained in a list named blocks. Each block of the geometry
is defined by 8 vertices, one at each corner of a hexahedron. An example block is shown
in Figure 5.3 with each vertex numbered according to the list in section 5.4.2. The edge
connecting vertices 1 and 5 is curved as a reminder that edges can be curved in blockMesh.

Each block has a local coordinate system (x1, x2, x3) that must be right-handed. A
right-handed set of axes is defined such that to an observer looking down the Oz axis,
with O nearest them, the arc from a point on the Ox axis to a point on the Oy axis is in
a clockwise sense.

The local coordinate system is defined by the order in which the vertices are presented
in the block definition according to:

• the axis origin is the first entry in the block definition, vertex 0 in our example;

• the x1 direction is described by moving from vertex 0 to vertex 1;

• the x2 direction is described by moving from vertex 1 to vertex 2;

• vertices 0, 1, 2, 3 define the plane x3 = 0;

• vertex 4 is found by moving from vertex 0 in the x3 direction;

• vertices 5,6 and 7 are similarly found by moving in the x3 direction from vertices
1,2 and 3 respectively.
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Figure 5.3: A single block

An example block specification is shown below.

blocks
(

hex (0 1 2 3 4 5 6 7) // vertex numbers
(10 10 10) // numbers of cells in each direction
simpleGrading (1 2 3) // cell expansion ratios

);

It begins with the shape identifier of the block (defined in the $FOAM_ETC/cellModels
file). The shape is always hex since the blocks are always hexahedra. The list of vertex
numbers follows, ordered in the manner described above.

The second entry gives the number of cells in each of the x1 x2 and x3 directions for
that block. The third entry gives the cell expansion ratios for each direction in the block.
The expansion ratio enables the mesh to be graded, or refined, in specified directions. The
ratio is that of the width of the end cell δe along one edge of a block to the width of the
start cell δs along that edge, as shown in Figure 5.4.

There are two types of grading specification available in blockMesh. The most common
one is simpleGrading which specifies uniform expansions in the local x1, x2 and x3
directions respectively with only 3 expansion ratios, e.g.

simpleGrading (1 2 3)

The more complex alternative is edgeGrading. This full cell expansion description gives
a ratio for each edge of the block, numbered according to the scheme shown in Figure 5.3
with the arrows representing the direction from first cell. . . to last cell e.g.

edgeGrading (1 1 1 1 2 2 2 2 3 3 3 3)

This example is directly equivalent to the simpleGrading example given above because
it uses a ratio of cell widths of 1 along edges 0-3, 2 along edges 4-7 and 3 along 8-11. Note
that it is possible to generate blocks with fewer than 8 vertices by collapsing one or more
pairs of vertices on top of each other, as described in section 5.4.10.
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Figure 5.4: Mesh grading along a block edge

5.4.5 Multi-grading of a block
Using a single expansion ratio to describe mesh grading permits only “one-way” grading
within a mesh block. In some cases, it reduces complexity and effort to be able to control
grading within separate divisions of a single block, rather than have to define several
blocks with one grading per block. For example, to mesh a channel with two opposing
walls and grade the mesh towards the walls requires three regions: two with grading to
the wall with one in the middle without grading.

OpenFOAM v2.4+ includes multi-grading functionality that can divide a block in an
given direction and apply different grading within each division. This multi-grading is
specified by replacing any single value expansion ratio in the grading specification of the
block, e.g. “1”, “2”, “3” in

blocks
(

hex (0 1 2 3 4 5 6 7) (100 300 100)
simpleGrading (1 2 3);

);

We will present multi-grading for the following example:

• split the block into 3 divisions in the y-direction, representing 20%, 60% and 20%
of the block length;

• include 30% of the total cells in the y-direction (300) in each divisions 1 and 3 and
the remaining 40% in division 2;

• apply 1:4 expansion in divisions 1 and 3, and zero expansion in division 2.

We can specify this by replacing the y-direction expansion ratio “2” in the example above
with the following:

blocks
(

hex (0 1 2 3 4 5 6 7) (100 300 100)
simpleGrading
(

1 // x-direction expansion ratio
(

(0.2 0.3 4) // 20% y-dir, 30% cells, expansion = 4
(0.6 0.4 1) // 60% y-dir, 40% cells, expansion = 1
(0.2 0.3 0.25) // 20% y-dir, 30% cells, expansion = 0.25 (1/4)

)
3 // z-direction expansion ratio

)
);
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Both the fraction of the block and the fraction of the cells are normalized automatically.
They can be specified as percentages, fractions, absolute lengths, etc. and do not need to
sum to 100, 1, etc. The example above can be specified using percentages, e.g.

blocks
(

hex (0 1 2 3 4 5 6 7) (100 300 100)
simpleGrading
(

1
(

(20 30 4) // 20%, 30%...
(60 40 1)
(20 30 0.25)

)
3

)
);

5.4.6 The boundary
The boundary of the mesh is given in a list named boundary. The boundary is broken
into patches (regions), where each patch in the list has its name as the keyword, which
is the choice of the user, although we recommend something that conveniently identifies
the patch, e.g.inlet; the name is used as an identifier for setting boundary conditions in
the field data files. The patch information is then contained in sub-dictionary with:

• type: the patch type, either a generic patch on which some boundary conditions
are applied or a particular geometric condition, as listed in section 5.3;

• faces: a list of block faces that make up the patch and whose name is the choice of
the user, although we recommend something that conveniently identifies the patch,
e.g.inlet; the name is used as an identifier for setting boundary conditions in the
field data files.

blockMesh collects block faces that are omitted from the patches in the boundary list
and assigns them to a default patch. The default patch can be configured through a
defaultPatch sub-dictionary, including type and name, e.g.

defaultPatch
{

name frontAndBack;
type empty;

}

In absence of any of these entries a default patch uses the name defaultFaces and type
empty by default. This means that for a 2D, the user has the option to omit block faces
lying in the 2D plane, knowing that they will be collected into an empty patch as required.

Returning to the example block in Figure 5.3, if it has an inlet on the left face, an
output on the right face and the four other faces are walls then the patches could be
defined as follows:
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boundary // keyword
(

inlet // patch name
{

type patch; // patch type for patch 0
faces
(

(0 4 7 3) // block face in this patch
);

} // end of 0th patch definition

outlet // patch name
{

type patch; // patch type for patch 1
faces
(

(1 2 6 5)
);

}

walls
{

type wall;
faces
(

(0 1 5 4)
(0 3 2 1)
(3 7 6 2)
(4 5 6 7)

);
}

);

Each block face is defined by a list of 4 vertex numbers. The list can begin with any
vertex but needs to follow a sequence through connecting edges, with no restriction on
the direction.

Where a patch type requires additional data in the resulting boundary file, the data is
simply added in the patch entry in blockMeshDict. For example, with the cyclic patch, the
user must specify the name of the related patch through the neighbourPatch keyword,
e.g.

left
{

type cyclic;
neighbourPatch right;
faces ((0 4 7 3));

}
right
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{
type cyclic;
neighbourPatch left;
faces ((1 5 6 2));

}

5.4.7 Multiple blocks
A mesh can be created using more than 1 block. In such circumstances, the mesh is
created as described in the preceeding text. The only additional issue is the connection
between blocks. Firstly, if a face of one block also belongs to another block, the block
face will not form an external patch but instead a set of internal faces of the cells in the
resulting mesh.

Alternatively if the user wishes to combine block faces which do not exactly match
one another, i.e. through shared vertices, they can first include the block faces within the
patches list. Each pair of patches whose faces are to be merged can then be included in
an optional list named mergePatchPairs. The format of mergePatchPairs is:

mergePatchPairs
(

( <masterPatch> <slavePatch> ) // merge patch pair 0
( <masterPatch> <slavePatch> ) // merge patch pair 1
...

)

See for example $FOAM_TUTORIALS/multiphaseEuler/LBend. The pairs of patches are
interpreted such that the first patch becomes the master and the second becomes the
slave. The rules for merging are as follows:

• the faces of the master patch remain as originally defined, with all vertices in their
original location;

• the faces of the slave patch are projected onto the master patch where there is some
separation between slave and master patch;

• the location of any vertex of a slave face might be adjusted by blockMesh to eliminate
any face edge that is shorter than a minimum tolerance;

• if patches overlap as shown in Figure 5.5, each face that does not merge remains as
an external face of the original patch, on which boundary conditions must then be
applied;

• if all the faces of a patch are merged, then the patch itself will contain no faces and
is removed.

The consequence is that the original geometry of the slave patch will not necessarily be
completely preserved during merging. Therefore in a case, say, where a cylindrical block
is being connected to a larger block, it would be wise to the assign the master patch to the
cylinder, so that its cylindrical shape is correctly preserved. There are some additional
recommendations to ensure successful merge procedures:
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Figure 5.5: Merging overlapping patches

• in 2 dimensional geometries, the size of the cells in the third dimension, i.e. out of
the 2D plane, should be similar to the width/height of cells in the 2D plane;

• it is inadvisable to merge a patch twice, i.e. include it twice in mergePatchPairs;

• where a patch to be merged shares a common edge with another patch to be merged,
both should be declared as a master patch.

5.4.8 Projection of vertices, edges and faces
blockMesh can be configured to create body fitted meshes using projection of vertices,
edges and/or faces onto specified geometry. The functionality can be used to mesh spher-
ical and cylindrical geometries such as pipes and vessels conveniently. The user can specify
within the blockMeshDict file within an optional geometry dictionary with the same for-
mat as used in the snappyHexMeshDict file. For example to specify a cylinder using the
built in geometric type the user could configure with the following:
geometry
{

cylinder
{

type searchableCylinder;
point1 (0 -4 0);
point2 (0 4 0);
radius 0.7;

}
};

The user can then project vertices, edges and/or faces onto the cylinder surface with the
project keyword using example syntax shown below:
vertices
(

project (-1 -0.1 -1) (cylinder)
project ( 1 -0.1 -1) (cylinder)
...

);

edges

OpenFOAM-13



5.4 Mesh generation with the blockMesh utility U-151

(
project 0 1 (cylinder)
...

);

faces
(

project (0 4 7 3) cylinder
...

);

The use of this functionality is demonstrated in tutorials which can be located by searching
for the project keyword in all the blockMeshDict files by:

find $FOAM_TUTORIALS -name blockMeshDict | xargs grep -l project

5.4.9 Naming vertices, edges, faces and blocks
Vertices, edges, faces and blocks can be named in the configuration of a blockMeshDict
file, which can make it easier to manage more complex examples. It is done simply using
the name keyword. The following syntax shows naming using the example for projection
in the previous subsection:
vertices
(

name v0 project (-1 -0.1 -1) (cylinder)
name v1 project ( 1 -0.1 -1) (cylinder)
...

);

edges
(

project v0 v1 (cylinder)
...

);

When a name is provided for a given entity, it can be used to replace the index. In the
example about, rather than specify the edge using vertex indices 0 and 1, the names v0
and v1 are used.

5.4.10 Blocks with fewer than 8 vertices
It is possible to collapse one or more pair(s) of vertices onto each other in order to create
a block with fewer than 8 vertices. The most common example of collapsing vertices is
when creating a 6-sided wedge shaped block for 2-dimensional axi-symmetric cases that
use the wedge patch type described in section 5.3.2. The process is best illustrated by
using a simplified version of our example block shown in Figure 5.6. Let us say we wished
to create a wedge shaped block by collapsing vertex 7 onto 4 and 6 onto 5. This is simply
done by exchanging the vertex number 7 by 4 and 6 by 5 respectively so that the block
numbering would become:

hex (0 1 2 3 4 5 5 4)

The same applies to the patches with the main consideration that the block face
containing the collapsed vertices, previously (4 5 6 7) now becomes (4 5 5 4). This is
a block face of zero area which creates a patch with no faces in the polyMesh, as the user
can see in a boundary file for such a case. The patch should be specified as empty in the
blockMeshDict and the boundary condition for any fields should consequently be empty
also.
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Figure 5.6: Creating a wedge shaped block with 6 vertices

5.4.11 Running blockMesh
As described in section 3.3, blockMesh can be run from within the case directory by:

blockMesh

Like many utilities, it can also be run using a configuration file named differently from
blockMeshDict. Several examples in the tutorials directory for example use the pitzDaily
geometry. They use a common blockMesh configuration file named pitzDaily in the $FOAM-
_TUTORIALS/resources/blockMesh. The meshes for these cases are generated using the
-dict option by

blockMesh -dict $FOAM_TUTORIALS/resources/blockMesh/pitzDaily

5.5 Mesh generation with snappyHexMesh
This section describes the mesh generation utility, snappyHexMesh, supplied with Open-
FOAM. The snappyHexMesh utility generates 3-dimensional meshes containing hexahedra
(hex) and split-hexahedra (split-hex) automatically from triangulated surface geometries,
or tri-surfaces, in Stereolithography (STL) or Wavefront Object (OBJ) format. The mesh
approximately conforms to the surface by iteratively refining a starting mesh and mor-
phing the resulting split-hex mesh to the surface. An optional phase will shrink back the
resulting mesh and insert cell layers. The specification of mesh refinement level is very
flexible and the surface handling is robust with a pre-specified final mesh quality. It runs
in parallel with a load balancing step every iteration.

5.5.1 The mesh generation process of snappyHexMesh
The process of generating a mesh using snappyHexMesh will be described using the
schematic in Figure 5.7. The objective is to mesh a rectangular shaped region (shaded
grey in the figure) surrounding an object described by a tri-surface, e.g. typical for an
external aerodynamics simulation. Note that the schematic is 2-dimensional to make it
easier to understand, even though the snappyHexMesh is a 3D meshing tool.

In order to run snappyHexMesh, the user requires the following:
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STL surface

Figure 5.7: Schematic 2D meshing problem for snappyHexMesh

• one or more tri-surface files located in a constant/geometry sub-directory of the case
directory;

• a background hex mesh which defines the extent of the computational domain and
a base level mesh density; typically generated using blockMesh, discussed in sec-
tion 5.5.2.

• a snappyHexMeshDict dictionary, with appropriate entries, located in the system
sub-directory of the case.

The snappyHexMeshDict dictionary includes: switches at the top level that control the
various stages of the meshing process; and, individual sub-directories for each process.
The entries are listed below.

• castellatedMesh: to switch on creation of the castellated mesh.

• snap: to switch on surface snapping stage.

• addLayers: to switch on surface layer insertion.

• mergeTolerance: merge tolerance as fraction of bounding box of initial mesh.

• geometry: sub-dictionary of all surface geometry used.

• castellatedMeshControls: sub-dictionary of controls for castellated mesh.

• snapControls: sub-dictionary of controls for surface snapping.

• addLayersControls: sub-dictionary of controls for layer addition.

• meshQualityControls: sub-dictionary of controls for mesh quality.

All the geometry used by snappyHexMesh is specified in a geometry sub-dictionary in
the snappyHexMeshDict dictionary. The geometry can be specified through a tri-surface
or bounding geometry entities in OpenFOAM. An example is given below:
geometry
{

duct // User defined region name
{

type triSurfaceMesh;
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Figure 5.8: Initial mesh generation in snappyHexMesh meshing process

file "duct.obj"; // surface geometry OBJ file
regions
{

leftOpening // Named region in the OBJ file
{

name inlet; // User-defined patch name
} // otherwise given sphere1_secondSolid

}
}

box // User defined region name
{

type searchableBox; // region defined by bounding box
min (1.5 1 -0.5);
max (3.5 2 0.5);

}

sphere // User defined region name
{

type searchableSphere; // region defined by bounding sphere
centre (1.5 1.5 1.5);
radius 1.03;

}
};

5.5.2 Creating the background hex mesh

Before snappyHexMesh is executed the user must create a background mesh of hexahedral
cells that fills the entire region within by the external boundary as shown in Figure 5.8.
This can be done simply using blockMesh. The following criteria must be observed when
creating the background mesh:

• the mesh must consist purely of hexes;

• the cell aspect ratio should be approximately 1, at least near surfaces at which
the subsequent snapping procedure is applied, otherwise the convergence of the
snapping procedure is slow, possibly to the point of failure;

• there must be at least one intersection of a cell edge with the tri-surface, i.e. a mesh
of one cell will not work.
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Figure 5.9: Cell splitting by feature edge in snappyHexMesh meshing process

5.5.3 Cell splitting at feature edges and surfaces
Cell splitting is performed according to the specification supplied by the user in the
castellatedMeshControls sub-dictionary in the snappyHexMeshDict. The entries for castel-
latedMeshControls are presented below.

• insidePoint: location vector inside the region to be meshed; vector must not
coincide with a cell face either before or during refinement.

• maxLocalCells: max number of cells per processor during refinement.

• maxGlobalCells: overall cell limit during refinement (i.e. before removal).

• minRefinementCells: if minRefinementCells ≥ number of cells to be refined,
surface refinement stops.

• nCellsBetweenLevels: number of buffer layers of cells between successive levels of
refinement (typically set to 3).

• resolveFeatureAngle: applies maximum level of refinement to cells that can see
intersections whose angle exceeds resolveFeatureAngle (typically set to 30).

• features: list of features for refinement.

• refinementSurfaces: dictionary of surfaces for refinement.

• refinementRegions: dictionary of regions for refinement.

The splitting process begins with cells being selected according to specified edge fea-
tures first within the domain as illustrated in Figure 5.9. The features list in the
castellatedMeshControls sub-dictionary permits dictionary entries containing a name of an
edgeMesh file and the level of refinement, e.g.:

features
(

{
file "features.eMesh"; // file containing edge mesh
level 2; // level of refinement

}
);
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Figure 5.10: Cell splitting by surface in snappyHexMesh meshing process

The edgeMesh containing the features can be extracted from the tri-surface file using the
surfaceFeatures utility which specifies the tri-surface and controls such as included angle
through a surfaceFeaturesDict configuration file, examples of which can be found in several
tutorials and at $FOAM_ETC/caseDicts/surface/surfaceFeaturesDict. The utility is simply
run by executing the following in a terminal

surfaceFeatures

Following feature refinement, cells are selected for splitting in the locality of specified
surfaces as illustrated in Figure 5.10. The refinementSurfaces dictionary in castel-
latedMeshControls requires dictionary entries for each STL surface and a default level
specification of the minimum and maximum refinement in the form (<min> <max>).
The minimum level is applied generally across the surface; the maximum level is ap-
plied to cells that can see intersections that form an angle in excess of that specified by
resolveFeatureAngle.

The refinement can optionally be overridden on one or more specific region of an STL
surface. The region entries are collected in a regions sub-dictionary. The keyword for
each region entry is the name of the region itself and the refinement level is contained
within a further sub-dictionary. An example is given below:
refinementSurfaces
{

duct
{

level (2 2); // default (min max) refinement for whole surface
regions
{

leftOpening
{

level (3 3); // optional refinement for secondSolid region
}

}
}

}

5.5.4 Cell removal
Once the feature and surface splitting is complete a process of cell removal begins. Cell
removal requires one or more regions enclosed entirely by a bounding surface within the
domain. The region in which cells are retained are simply identified by a location vector
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Figure 5.11: Cell removal in snappyHexMesh meshing process

Figure 5.12: Cell splitting by region in snappyHexMesh meshing process

within that region, specified by the insidePoint keyword in castellatedMeshControls.
Cells are retained if, approximately speaking, 50% or more of their volume lies within the
region. The remaining cells are removed accordingly as illustrated in Figure 5.11.

5.5.5 Cell splitting in specified regions
Those cells that lie within one or more specified volume regions can be further split as il-
lustrated in Figure 5.12 by a rectangular region shown by dark shading. The refinement-
Regions sub-dictionary in castellatedMeshControls contains entries for refinement of the
volume regions specified in the geometry sub-dictionary. A refinement mode is applied to
each region which can be:

• inside refines inside the volume region;

• outside refines outside the volume region

• distance refines according to distance to the surface; and can accommodate differ-
ent levels at multiple distances with the levels keyword.

For the refinementRegions, the refinement level is specified by the level keyword
for inside and outside refinement. For distance refinement, the keyword is levels
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(plural!) which contains list of entries with the format (<distance> <level>). Ex-
amples are shown below:
refinementRegions
{

box
{

mode inside;
level 4; // refinement level 4

}

sphere
{ // refinement level 5 within 1.0 m

mode distance; // refinement level 3 within 2.0 m
levels ((1.0 5) (2.0 3)); // levels must be ordered nearest first

}
}

5.5.6 Cell splitting based on local span
Refinement of cells can also be specified to guarantee a specified number of cells across
the span between opposing surfaces. This refinement option can ensure that there are
sufficient cells to resolve the flow in a region of the domain, e.g. across a narrow pipe. The
method requires closeness data to be provided on the surface geometry. The closeness
can be calculated by the surfaceFeatures utility with the following entry in the surfaceFea-
turesDict file:
surfaces
(

"pipeWall.obj"
);

closeness
{

pointCloseness yes;
}

This writes closeness data to a file named pipeWall.closeness.internalPointCloseness into
the constant/geometry directory. The closeness is then be used for span-based refinement
by the addition of an entry in the refinementRegions sub-dictionary in snappyHexMesh-
Dict, e.g.:
refinementRegions
{

pipeWall
{

mode insideSpan;
level (1000 2);
cellsAcrossSpan 40;

}
}

The example shows a refinement region inside the pipeWall surface in which a maximum
2 levels of refinement is guaranteed within a specified distance of 1000 from the wall. The
span-based refinement, specified by the insideSpan mode, enables the user to guarantee
at least 40 cellsAcrossSpan, i.e. across the pipe diameter.

5.5.7 Snapping to surfaces
The next stage of the meshing process involves moving cell vertex points onto surface
geometry to remove the jagged castellated surface from the mesh. The process is:

1. displace the vertices in the castellated boundary onto the STL surface;
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Figure 5.13: Surface snapping in snappyHexMesh meshing process

2. solve for relaxation of the internal mesh with the latest displaced boundary vertices;

3. find the vertices that cause mesh quality parameters to be violated;

4. reduce the displacement of those vertices from their initial value (at 1) and repeat
from 2 until mesh quality is satisfied.

The method uses the settings in the snapControls sub-dictionary in snappyHexMeshDict,
listed below.

• nSmoothPatch: number of patch smoothing iterations before finding correspondence
to surface (typically 3).

• tolerance: ratio of distance for points to be attracted by surface feature point or
edge, to local maximum edge length (typically 2.0).

• nSolveIter: number of mesh displacement relaxation iterations (typically 30-100).

• nRelaxIter: maximum number of snapping relaxation iterations (typically 5).

An example is illustrated in the schematic in Figure 5.13 (albeit with mesh motion that
looks slightly unrealistic).

5.5.8 Mesh layers
The mesh output from the snapping stage may be suitable for the purpose, although it
can produce some irregular cells along boundary surfaces. There is an optional stage of
the meshing process which introduces additional layers of hexahedral cells aligned to the
boundary surface as illustrated by the dark shaded cells in Figure 5.14.

The process of mesh layer addition involves shrinking the existing mesh from the
boundary and inserting layers of cells, broadly as follows:

1. the mesh is projected back from the surface by a specified thickness in the direction
normal to the surface;

2. solve for relaxation of the internal mesh with the latest projected boundary vertices;

3. check if validation criteria are satisfied otherwise reduce the projected thickness and
return to 2; if validation cannot be satisfied for any thickness, do not insert layers;
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Figure 5.14: Layer addition in snappyHexMesh meshing process

4. if the validation criteria can be satisfied, insert mesh layers;

5. the mesh is checked again; if the checks fail, layers are removed and we return to 2.

The layer addition procedure uses the settings in the addLayersControls sub-dictionary
in snappyHexMeshDict; entries are listed below. The user has the option of 4 different
layer thickness parameters — expansionRatio, finalLayerThickness, firstLayer-
Thickness, thickness — from which they must specify 2 only; more than 2, and the
problem is over-specified.

• layers: dictionary specifying layers to be inserted.

• relativeSizes: switch that sets whether the specified layer thicknesses are relative
to undistorted cell size outside layer or absolute.

• expansionRatio: expansion factor for layer mesh, increase in size from one layer
to the next.

• finalLayerThickness: thickness of layer furthest from the wall, usually in combi-
nation with relative sizes according to the relativeSizes entry.

• firstLayerThickness: thickness of layer nearest the wall, usually in combination
with absolute sizes according to the relativeSizes entry.

• thickness: total thickness of all layers of cells, usually in combination with absolute
sizes according to the

• relativeSizes entry.

• minThickness: minimum thickness of cell layer, either relative or absolute (as
above).

• nGrow: number of layers of connected faces that are not grown if points do not get
extruded; helps convergence of layer addition close to features.

• featureAngle: angle above which surface is not extruded.

• nRelaxIter: maximum number of snapping relaxation iterations (typcially 5).
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• nSmoothSurfaceNormals: number of smoothing iterations of surface normals (typ-
ically 1).

• nSmoothNormals: number of smoothing iterations of interior mesh movement direc-
tion (typically 3).

• nSmoothThickness: smooth layer thickness over surface patches (typically 10).

• maxFaceThicknessRatio: stop layer growth on highly warped cells (typically 0.5).

• maxThicknessToMedialRatio: reduce layer growth where ratio thickness to medial
distance is large (typically 0.3)

• minMedianAxisAngle: angle used to pick up medial axis points (typically 90).

• nBufferCellsNoExtrude: create buffer region for new layer terminations (typically
0).

• nLayerIter: overall max number of layer addition iterations (typically 50).

• nRelaxedIter: max number of iterations after which the controls in the relaxed sub
dictionary of meshQuality are used (typically 20).

The layers sub-dictionary contains entries for each patch on which the layers are to be
applied and the number of surface layers required. The patch name is used because the
layers addition relates to the existing mesh, not the surface geometry; hence applied to a
patch, not a surface region. An example layers entry is as follows:
layers
{

sphere1_firstSolid
{

nSurfaceLayers 1;
}
maxY
{

nSurfaceLayers 1;
}

}

5.5.9 Mesh quality controls
The mesh quality is controlled by the entries in the meshQualityControls sub-dictionary in
snappyHexMeshDict; entries are listed below.

• maxNonOrtho: maximum non-orthogonality allowed (degrees, typically 65).

• maxBoundarySkewness: max boundary face skewness allowed (typically 20).

• maxInternalSkewness: max internal face skewness allowed (typically 4).

• maxConcave: max concaveness allowed (typically 80).

• minFlatness: ratio of minimum projected area to actual area (typically 0.5)

• minTetQuality: minimum quality of tetrahedral cells from cell decomposition; gen-
erally deactivated by setting large negative number since v5.0 when new barycentric
tracking was introduced, which could handle negative tets.
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• minVol: minimum cell pyramid volume (typically 1e-13, large negative number
disables).

• minArea: minimum face area (typically -1).

• minTwist: minimum face twist (typically 0.05).

• minDeterminant: minimum normalised cell determinant; 1 = hex; ≤ 0 = illegal cell
(typically 0.001).

• minFaceWeight: 0→0.5 (typically 0.05).

• minVolRatio: 0→1.0 (typically 0.01).

• minTriangleTwist: > 0 for Fluent compatibility (typically -1).

• nSmoothScale: number of error distribution iterations (typically 4).

• errorReduction: amount to scale back displacement at error points (typically 0.75).

• relaxed: sub-dictionary that can include modified values for the above keyword
entries to be used when nRelaxedIter is exceeded in the layer addition process.

5.6 Mesh Zones
This section describes mesh zones and some popular tools which use zones as part of the
meshing process. A zone is a list (or collection) of points or faces or cells within a mesh
which is identifiable by a name. The list contains exclusively the indices of points, faces
or cells, meaning there are three types of zone, represented in OpenFOAM by the classes
pointZone, faceZone and cellZone. A unique name is required for each zone of a particular
type, but the same name can be used for one pointZone, faceZone and cellZone.

A cellZone has many uses. One example is that it can define a region of the mesh
to which a source term, e.g. a heat source, can be applied using an fvModel. Another is
to represent a region of a mesh over which some quantity is calculated, e.g. the average
temperature. A cellZone is often used to identify cells for some kind of modification, e.g.
refinement, within a mesh generation process.

A faceZone can optionally include information about the orientation of the faces, in
addition to their indices. The information is contained in a flipMap, whose purpose is to
provide a consistent orientation for all faces, e.g. to make all faces “point” in a downstream
direction. The flipMap contains a boolean (true/false) for each face. The sign (+/−)
of normal vectors of faces marked true can then be flipped so that they are oriented in
a consistent direction with normal vectors of faces marked false.

A pointZone is much less commonly used that a cellZone and faceZone. It is generally
used for a prescribed mesh motion, in which some or all points in a mesh are re-positioned.

5.6.1 Creating zones
A zone can be created in two ways. First, it can be created as part of the meshing process,
when the zone is included within the mesh within a relevant file in the polyMesh directory.
The relevant files are cellZones, faceZones and pointZones, which can each contain a set
of one or more zones (in fact, a file can exist but contain zero zones).
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These “static” zones can be created by a mesh generation tool, e.g. blockMesh or
snappyHexMesh. Other utilities can also create them, especially the dedicated createZones
tool, where the zones are configured through a createZonesDict file.

A zone can also be generated “dynamically” within an application, especially during a
CFD simulation itself, i.e. within foamRun or foamMultiRun. These zones usually remain
unchanged, following their generation at the beginning of a simulation. Alternatively,
if a zone represents a fixed region of space, and the mesh is moving, the list of indices
describing a zone can be updated dynamically during a simulation.

Dynamic zones are configured through a zonesGenerator file. The file can both include
the configuration of new zones and may also involve “static” zones which have already
been created as part of the mesh.

5.6.2 Zone generators
Zones can be configured in a zonesGenerator file, createZonesDict file and other configura-
tion files for utilities described in following sections. There are several types of zoneGen-
erator, which are listed in this section. For detailed information about their configuration,
the user can simply run the foamInfo script, e.g.

foamInfo union

Zones are always updated when there are topological changes within the mesh, e.g. mesh-
ing refinement and unrefinement. When the mesh moves, users have the option to retain
the same elements (cells, faces, points) within the zone, such that the zone moves with
the mesh. Alternatively, they can update the elements of a zone during a simulation
by setting the moveUpdate switch to on/yes/true. This allows the zones to represent
regions fixed in space with the mesh moving within it.

The first set of zone generators describe volume regions within the domain. They
can create a zone of cells, faces or points contained within the volume region. Cells and
faces are included when their centres are within the volume; points are included which
are within the volume. The volume zone generators are listed below.

• annulus: selects cells, faces or points inside an annulus.

• box: selects cells, faces or points inside a box.

• cylinder: selects cells, faces or points inside a cylinder.

• hemisphere: selects cells, faces or points inside a hemisphere.

• insideSurface: selects cells, faces or points inside a closed surface described by a
surface geometry file, e.g. surface.obj.

• sphere: selects cells, faces or points inside a sphere.

• truncatedCone: selects cells, faces or points inside a truncated cone.

An example configuration of a hemisphere zone generator is presented below (taking
from running “foamInfo hemisphere”).
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hemisphere1
{

type hemisphere;
zoneType cell;

centre (-0.001 0.001 0);
axis (0 1 0);
radius 0.001;

}

There are then zone generators which are specific to cells, faces and points. The
biggest set of these is the zone generators for faces which are listed below.

• face: creates a face zone from point, cell and face zones provided by a list of
zoneGenerators.

• flip: inverts the flipMap of a face zone from a given zoneGenerator.

• normal: selects faces from a given zoneGenerator that are aligned with a specified
normal direction.

• orient: sets the face orientation flipMap of a face zone.

• patch: creates a face zone from a set of patches.

• plane: creates a face zone from faces, whose vector connecting its adjacent cell
centres, intersects a specified plane.

• surface: creates a face zone from faces whose vector, , whose vector connecting its
adjacent cell centres, intersects a surface geometry, e.g. surface.obj.

As discussed in the introduction to this section, a face zone can optionally include a
flipMap. A flipMap is required, for example, to calculate the flow rate through an area
described by a face zone by summing the fluxes ϕf on all the faces in the face zone. That
calculation is only meaningful if the face area vectors, used to calculate ϕf, point in a
consistent direction. To ensure consistency, the sign of ϕf is inverted for faces marked
true in the flipMap.

Specific cell and point zone generators are listed below.

• cellZone: selects and/or generates a cell zone for a tool that requires one, e.g. a
functionObject, fvModel, fvConstraint or utility application.

• containsPoints: creates a cell zone containing the specified points.

• point: creates a point zone from face, cell and point zones provided by list of
zoneGenerators.

The final set of zone generators create, that manipulate and combine zones, are listed
below. When used to create a face zone, they have specific rules about creating a flipMap.

• all: creates a zone using all cells, faces or points of the mesh; no flipMap for a
face zone.
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• clear: clears all zones from a mesh.

• difference: selects cell, face or point elements in the first specified zone and re-
moves the elements in subsequent specified zones.

• intersection: selects cell, face or point elements common to all the specified zones;
can contain a flipMap if one face zone includes one.

• invert: selects cell, face or point elements in the mesh and removes the elements
from the specified zones.

• periodic: activates a specified set of zones for a given period with optional repeti-
tion.

• remove: removes specified zones from a mesh.

• set: converts a legacy cell, face or point set to an equivalent zone; no flipMap a
the face zone.

• union: selects all cell, face or point elements from all the specified zones; can contain
a flipMap if all face zones include one.

• write: writes existing zones to the mesh, e.g. for visualisation.

5.6.3 The createZones utility

The createZones utility creates “static” zones that form part of a mesh. There are many
example cases in OpenFOAM that use createZones that can be inspected to learn about its
use. One example is the coolingSphere case (in $FOAM_TUTORIALS/multiRegion/CHT)
which generates a cell zone that is subsequently used to form a separate mesh region for
a solid sphere. The configuration from the createPatchDict file is shown below.

16 solid
17 {
18 type sphere;
19 zoneType cell;
20
21 centre (0 0 0);
22 radius $blockMeshDict!geometry/sphere/radius;
23 }
24
25 // ************************************************************************* //

It generates a zone named solid using the sphere zone generator. The zone type is a cell
zone. The remaining parameters describe the sphere, namely the centre and radius.
The latter is read from the blockMeshDict file using a macro expansion, described in
section 4.2.10.

The mesh and cell zone are generated by running blockMesh and createZones respec-
tively. blockMesh first produces the standard mesh files in the constant/polyMesh. create-
Zones then generates an additional cellZones file in that directory, containing the list of
cell indices that make up the zone.
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5.6.4 The refineMesh utility
The refineMesh utility refines cells in a mesh. The refinement can be applied to cells in
the entire mesh or to specified regions of the mesh. The refinement is applied by splitting
cells, which can be applied in all three directions or on one or two specified directions.

To apply refinement across the entire mesh and in all three directions, refineMesh can
be run using the -all option, i.e.

refineMesh -all

Otherwise, the region of the mesh and/or refinement directions must be configured using
a refineMeshDict file.

There are many example cases in OpenFOAM which include refineMeshDict files. One
is the pipeCyclic case (in $FOAM_TUTORIALS/incompressibleFluid) whose refineMeshDict
file is shown below.

16
17 hexRef8 yes;
18
19 zone
20 {
21 type box;
22 box (-1e6 -1e6 -1e6)(1e6 -0.15 0.3);
23 }
24
25 // ************************************************************************* //

The file includes a zone entry to describe a cell zone configured with a box zone generator.
The refinement is specified through the hexRef8 switch, set to on. hexRef8 refines cells in
all directions, splitting each selected cell 2×2×2. It is the method used by snappyHexMesh
which keeps a record of the refinement history in a refinementHistory file in the polyMesh
directory.

The DTCHull case (in $FOAM_TUTORIALS/incompressibleVoF) is another example
that uses the refineMesh utility. It is a case of ship hydrodynamics which generates an
initial mesh which has high aspect ratio cells, stretched in the horizontal plane, in the
vicinity of the water-air interface. Before meshing the ship hull with snappyHexMesh,
the aspect ratio of cells is gradually reduced from the far field to the hull, by successive
refinements of cells in the horizontal directions. The refineMeshDict file for this case is
shown below.

16
17 coordinates
18 {
19 type global;
20
21 e1 (1 0 0);
22 e2 (0 1 0);
23
24 directions (e1 e2);
25 }
26
27 zones
28 {
29 level1
30 {
31 type box;
32 box (-10 -6 -3) (10 0 3);
33 }
34
35 level2
36 {
37 type box;
38 box (-5 -3 -2.5) (9 0 2);
39 }
40
41 level3

OpenFOAM-13



5.6 Mesh Zones U-167

42 {
43 type box;
44 box (-3 -1.5 -1) (8 0 1.5);
45 }
46
47 level4
48 {
49 type box;
50 box (-2 -1 -0.6) (7 0 1);
51 }
52
53 level5
54 {
55 type box;
56 box (-1 -0.6 -0.3) (6.5 0 0.8);
57 }
58
59 level6
60 {
61 type box;
62 box (-0.5 -0.55 -0.15) (6.25 0 0.65);
63 }
64 }
65
66 // ************************************************************************* //

It first describes the refinement directions by the coordinates sub-dictionary. The co-
ordinates must be specified by two orthogonal directions described by the e1 and e2
vectors. The directions parameter then lists the refinement directions, which could
theoretically include e3, the vector calculated orthogonal to e1 and e2 (forming a right-
handed set of axes).

The refinement is then specified in zones described in the a zones sub-dictionary. Six
box zones are listed from largest to smallest. Refinement is applied successively to each
zone so that it produces six levels of refinement in the final box, five levels in the region
described by the fifth box beyond the final box, and so on.

5.6.5 The createPatch utility
The createPatch utility creates new patches from collections of boundary faces. It enables
users to make changes to the patch configuration in a mesh, often in the final stages of a
meshing workflow. The utility is configured by a createPatchDict file.

There are some examples in OpenFOAM which use createPatch. Most of them create a
patch from faces defined by a face zone. The hotRoomComfort example (in $FOAM_TUT-
ORIALS/fluid) contains a createPatchDict file which creates an inlet and an outlet patch
in a mesh whose boundary initially contains a single wall patch. The createPatchDict file
is given below, showing each patch is generated from a box zone.

16 patches
17 {
18 inlet
19 {
20 // Dictionary to construct new patch from
21 patchInfo
22 {
23 type patch;
24 }
25
26 // Construct from zone
27 constructFrom zone;
28
29 // Generate zone
30 zone
31 {
32 type box;
33 box (-0.001 0.25 1.1)(0.001 0.75 1.3);
34 }
35 }
36
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37 outlet
38 {
39 // Dictionary to construct new patch from
40 patchInfo
41 {
42 type patch;
43 }
44
45 // Construct from zone
46 constructFrom zone;
47
48 // Generate zone
49 zone
50 {
51 type box;
52 box (1.75 2.999 0.3)(2.25 3.001 0.5);
53 }
54 }
55 }
56
57 // ************************************************************************* //

The potentialFreeSurfaceMovingOscillatingBox case (in $FOAM_TUTORIALS/isothermalFluid)
uses the createPatchDict shown below.

16 patches
17 {
18 floatingObjectBottom
19 {
20 // Dictionary to construct new patch from
21 patchInfo
22 {
23 type wall;
24 }
25
26 // Construct patch from a faceZone
27 constructFrom zone;
28
29 zone
30 {
31 type normal;
32
33 normal (0 1 0);
34 tol 0.01;
35
36 floatingObject
37 {
38 type patch;
39 patch floatingObject;
40 }
41 }
42 }
43 }
44
45 // ************************************************************************* //

This example uses a normal zone generator applied to a zone generated from patch. The
patch zone generation is configured within the normal zone configuration, resulting in
a zone containing faces, oriented with the specified normal direction, that are extracted
from the patch.

5.6.6 The subsetMesh utility
The subsetMesh utility creates a new mesh which is a subset of an existing mesh. It is
commonly used in a meshing workflow which creates a mesh, then uses subsetMesh to
remove part of the mesh.

The floatingObject tutorial (in $FOAM_TUTORIALS/incompressibleVoF) provides a
good example of its use. A mesh is initially created of a box-shaped domain. A floating
object is then introduced corresponding to a zone configured in subsetMeshDict, shown
below.
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16
17 zone
18 {
19 type box;
20 select outside;
21 box (0.35 0.35 0.1) (0.65 0.55 0.6);
22 }
23
24 patch floatingObject;
25
26 // ************************************************************************* //

The zone is configured by defining a box with the addition of the optional selection
keyword which selects cells outside the box. Consequently, the new mesh becomes the
original mesh without the cells contained with the box, which represents the floating
object. A patch entry provides a name for the patch formed by the faces exposed by
removal of the cells.

5.7 Mesh conversion
The user can generate meshes using other packages and convert them into the format that
OpenFOAM uses. There are numerous mesh conversion utilities listed in section 3.7.3.
Some of the more popular mesh converters are listed below and their use is presented in
this section.

fluentMeshToFoam reads a Fluent.msh mesh file, working for both 2-D and 3-D cases;

starToFoam reads STAR-CD/PROSTAR mesh files.

gambitToFoam reads a GAMBIT.neu neutral file;

ideasToFoam reads an I-DEAS mesh written in ANSYS.ans format;

cfx4ToFoam reads a CFX mesh written in .geo format;

5.7.1 fluentMeshToFoam
Fluent writes mesh data to a single file with a .msh extension. The file must be written
in ASCII format, which is not the default option in Fluent. It is possible to convert
single-stream Fluent meshes, including the 2 dimensional geometries. In OpenFOAM, 2
dimensional geometries are currently treated by defining a mesh in 3 dimensions, where
the front and back plane are defined as the empty boundary patch type. When reading
a 2 dimensional Fluent mesh, the converter automatically extrudes the mesh in the third
direction and adds the empty patch, naming it frontAndBackPlanes.

The following features should also be observed.

• The OpenFOAM converter will attempt to capture the Fluent boundary condition
definition as much as possible; however, since there is no clear, direct correspondence
between the OpenFOAM and Fluent boundary conditions, the user should check the
boundary conditions before running a case.

• Creation of axi-symmetric meshes from a 2 dimensional mesh is currently not sup-
ported but can be implemented on request.

• Multiple material meshes are not permitted. If multiple fluid materials exist, they
will be converted into a single OpenFOAM mesh; if a solid region is detected, the
converter will attempt to filter it out.
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• Fluent allows the user to define a patch which is internal to the mesh, i.e. consists
of the faces with cells on both sides. Such patches are not allowed in OpenFOAM
and the converter will attempt to filter them out.

• There is currently no support for embedded interfaces and refinement trees.

The procedure of converting a Fluent.msh file is first to create a new OpenFOAM case
by creating the necessary directories/files: the case directory containing a controlDict file
in a system subdirectory. Then at a command prompt the user should execute:

fluentMeshToFoam <meshFile>

where <meshFile> is the name of the .msh file, including the full or relative path.

5.7.2 starToFoam
This section describes how to convert a mesh generated on the STAR-CD code into a form
that can be read by OpenFOAM mesh classes. The mesh can be generated by any of the
packages supplied with STAR-CD, i.e.PROSTAR, SAMM, ProAM and their derivatives.
The converter accepts any single-stream mesh including integral and arbitrary couple
matching and all cell types are supported. The features that the converter does not
support are:

• multi-stream mesh specification;

• baffles, i.e. zero-thickness walls inserted into the domain;

• partial boundaries, where an uncovered part of a couple match is considered to be
a boundary face;

• sliding interfaces.

For multi-stream meshes, mesh conversion can be achieved by writing each individual
stream as a separate mesh and reassemble them in OpenFOAM.

OpenFOAM adopts a policy of only accepting input meshes that conform to the
fairly stringent validity criteria specified in section 5.1. It will simply not run using
invalid meshes and cannot convert a mesh that is itself invalid. The following sections
describe steps that must be taken when generating a mesh using a mesh generating
package supplied with STAR-CD to ensure that it can be converted to OpenFOAM format.
To avoid repetition in the remainder of the section, the mesh generation tools supplied
with STAR-CD will be referred to by the collective name STAR-CD.

We strongly recommend that the user run the STAR-CD mesh checking tools before
attempting a starToFoam conversion and, after conversion, the checkMesh utility should
be run on the newly converted mesh. Alternatively, starToFoam may itself issue warnings
containing PROSTAR commands that will enable the user to take a closer look at cells with
problems. Problematic cells and matches should be checked and fixed before attempting
to use the mesh with OpenFOAM. Remember that an invalid mesh will not run with
OpenFOAM, but it may run in another environment that does not impose the validity
criteria.

Some problems of tolerance matching can be overcome by the use of a matching
tolerance in the converter. However, there is a limit to its effectiveness and an apparent

OpenFOAM-13



5.7 Mesh conversion U-171

need to increase the matching tolerance from its default level indicates that the original
mesh suffers from inaccuracies.

When mesh generation in is completed, remove any extraneous vertices and compress
the cells boundary and vertex numbering, assuming that fluid cells have been created and
all other cells are discarded. This is done with the following PROSTAR commands:

CSET NEWS FLUID
CSET INVE

The CSET should be empty. If this is not the case, examine the cells in CSET and adjust
the model. If the cells are genuinely not desired, they can be removed using the PROSTAR
command:

CDEL CSET

Similarly, vertices will need to be discarded as well:

CSET NEWS FLUID
VSET NEWS CSET
VSET INVE

Before discarding these unwanted vertices, the unwanted boundary faces have to be col-
lected before purging:

CSET NEWS FLUID
VSET NEWS CSET
BSET NEWS VSET ALL
BSET INVE

If the BSET is not empty, the unwanted boundary faces can be deleted using:

BDEL BSET

At this time, the model should contain only the fluid cells and the supporting vertices,
as well as the defined boundary faces. All boundary faces should be fully supported by the
vertices of the cells, if this is not the case, carry on cleaning the geometry until everything
is clean.

By default, STAR-CD assigns wall boundaries to any boundary faces not explicitly
associated with a boundary region. The remaining boundary faces are collected into a
default boundary region, with the assigned boundary type 0. OpenFOAM deliberately
does not have a concept of a default boundary condition for undefined boundary faces
since it invites human error, e.g. there is no means of checking that we meant to give all
the unassociated faces the default condition.

Therefore all boundaries for each OpenFOAM mesh must be specified for a mesh to
be successfully converted. The default boundary needs to be transformed into a real
one using the procedure described below:

1. Plot the geometry with Wire Surface option.
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2. Define an extra boundary region with the same parameters as the default region
0 and add all visible faces into the new region, say 10, by selecting a zone option
in the boundary tool and drawing a polygon around the entire screen draw of the
model. This can be done by issuing the following commands in PROSTAR:

RDEF 10 WALL
BZON 10 ALL

3. We shall remove all previously defined boundary types from the set. Go through
the boundary regions:

BSET NEWS REGI 1
BSET NEWS REGI 2
... 3, 4, ...

Collect the vertices associated with the boundary set and then the boundary faces
associated with the vertices (there will be twice as many of them as in the original
set).

BSET NEWS REGI 1
VSET NEWS BSET
BSET NEWS VSET ALL
BSET DELE REGI 1
REPL

This should give the faces of boundary Region 10 which have been defined on top
of boundary Region 1. Delete them with BDEL BSET. Repeat these for all regions.

Renumber and check the model using the commands:

CSET NEW FLUID
CCOM CSET

VSET NEWS CSET
VSET INVE (Should be empty!)
VSET INVE
VCOM VSET

BSET NEWS VSET ALL
BSET INVE (Should be empty also!)
BSET INVE
BCOM BSET

CHECK ALL
GEOM

Internal PROSTAR checking is performed by the last two commands, which may reveal
some other unforeseeable error(s). Also, take note of the scaling factor because PROSTAR
only applies the factor for STAR-CD and not the geometry. If the factor is not 1, use the
scalePoints utility in OpenFOAM.

Once the mesh is completed, place all the integral matches of the model into the couple
type 1. All other types will be used to indicate arbitrary matches.

CPSET NEWS TYPE INTEGRAL
CPMOD CPSET 1
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The components of the computational grid must then be written to their own files. This
is done using PROSTAR for boundaries by issuing the command

BWRITE

by default, this writes to a .23 file (versions prior to 3.0) or a .bnd file (versions 3.0 and
higher). For cells, the command

CWRITE

outputs the cells to a .14 or .cel file and for vertices, the command

VWRITE

outputs to file a .15 or .vrt file. The current default setting writes the files in ASCII
format. If couples are present, an additional couple file with the extension .cpl needs to
be written out by typing:

CPWRITE

After outputting to the three files, exit PROSTAR or close the files. Look through
the panels and take note of all STAR-CD sub-models, material and fluid properties used
– the material properties and mathematical model will need to be set up by creating and
editing OpenFOAM dictionary files.

The procedure of converting the PROSTAR files is first to create a new OpenFOAM
case by creating the necessary directories. The PROSTAR files must be stored within the
same directory and the user must change the file extensions: from .23, .14 and .15 (below
STAR-CD version 3.0), or .pcs, .cls and .vtx (STAR-CD version 3.0 and above); to .bnd,
.cel and .vrt respectively.

The .vrt file is written in columns of data of specified width, rather than free format. A
typical line of data might be as follows, giving a vertex number followed by the coordinates:

19422 -0.105988957 -0.413711881E-02 0.000000000E+00

If the ordinates are written in scientific notation and are negative, there may be no space
between values, e.g.:

19423 -0.953953117E-01-0.338810333E-02 0.000000000E+00

The starToFoam converter reads the data using spaces to delimit the ordinate values and
will therefore object when reading the previous example. Therefore, OpenFOAM includes
a simple script, foamCorrectVrt to insert a space between values where necessary, i.e. it
would convert the previous example to:

19423 -0.953953117E-01 -0.338810333E-02 0.000000000E+00

The foamCorrectVrt script should therefore be executed if necessary before running the
starToFoam converter, by typing:

foamCorrectVrt <file>.vrt
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The translator utility starToFoam can now be run to create the boundaries, cells and
points files necessary for a OpenFOAM run:

starToFoam <meshFilePrefix>

where <meshFilePrefix> is the name of the prefix of the mesh files, including the full or
relative path. After the utility has finished running, OpenFOAM boundary types should
be specified by editing the boundary file by hand.

5.7.3 gambitToFoam
GAMBIT writes mesh data to a single file with a .neu extension. The procedure of con-
verting a GAMBIT.neu file is first to create a new OpenFOAM case, then at a command
prompt, the user should execute:

gambitToFoam <meshFile>

where <meshFile> is the name of the .neu file, including the full or relative path.
The GAMBIT file format does not provide information about type of the boundary

patch, e.g. wall, symmetry plane, cyclic. Therefore all the patches have been created as
type patch. Please reset after mesh conversion as necessary.

5.7.4 ideasToFoam
OpenFOAM can convert a mesh generated by I-DEAS but written out in ANSYS format
as a .ans file. The procedure of converting the .ans file is first to create a new OpenFOAM
case, then at a command prompt, the user should execute:

ideasToFoam <meshFile>

where <meshFile> is the name of the .ans file, including the full or relative path.

5.7.5 cfx4ToFoam
CFX writes mesh data to a single file with a .geo extension. The mesh format in CFX is
block-structured, i.e. the mesh is specified as a set of blocks with glueing information and
the vertex locations. OpenFOAM will convert the mesh and capture the CFX boundary
condition as best as possible. The 3 dimensional ‘patch’ definition in CFX, containing
information about the porous, solid regions etc. is ignored with all regions being converted
into a single OpenFOAM mesh. CFX supports the concept of a ‘default’ patch, where
each external face without a defined boundary condition is treated as a wall. These faces
are collected by the converter and put into a defaultFaces patch in the OpenFOAM
mesh and given the type wall; of course, the patch type can be subsequently changed.

Like, OpenFOAM 2 dimensional geometries in CFX are created as 3 dimensional
meshes of 1 cell thickness. If a user wishes to run a 2 dimensional case on a mesh created
by CFX, the boundary condition on the front and back planes should be set to empty;
the user should ensure that the boundary conditions on all other faces in the plane of the
calculation are set correctly. Currently there is no facility for creating an axi-symmetric
geometry from a 2 dimensional CFX mesh.

The procedure of converting a CFX.geo file is first to create a new OpenFOAM case,
then at a command prompt, the user should execute:
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cfx4ToFoam <meshFile>

where <meshFile> is the name of the .geo file, including the full or relative path.

5.8 Mapping fields between different geometries
The mapFields utility maps one or more fields relating to a given geometry onto the
corresponding fields for another geometry. It is completely generalised in so much as
there does not need to be any similarity between the geometries to which the fields relate.
However, for cases where the geometries are consistent, mapFields can be executed with
a special option that simplifies the mapping process.

For our discussion of mapFields we need to define a few terms. First, we say that
the data is mapped from the source to the target. The fields are deemed consistent if
the geometry and boundary types, or conditions, of both source and target fields are
identical. The field data that mapFields maps are those fields within the time directory
specified by startFrom/startTime in the controlDict of the target case. The data is read
from the equivalent time directory of the source case and mapped onto the equivalent
time directory of the target case.

5.8.1 Mapping consistent fields
A mapping of consistent fields is simply performed by executing mapFields on the (target)
case using the -consistent command line option as follows:

mapFields <source dir> -consistent

5.8.2 Mapping inconsistent fields
When the fields are not consistent, as shown in Figure 5.15, mapFields requires a map-
FieldsDict dictionary in the system directory of the target case. The following rules apply
to the mapping:

• the field data is mapped from source to target wherever possible, i.e. in our example
all the field data within the target geometry is mapped from the source, except those
in the shaded region which remain unaltered;

• the patch field data is left unaltered unless specified otherwise in the mapFieldsDict
dictionary.

The mapFieldsDict dictionary contain two lists that specify mapping of patch data. The
first list is patchMap that specifies mapping of data between pairs of target and source
patches that are geometrically coincident, as shown in Figure 5.15. The list contains
each pair of names of target patch (first) and source patch (second). The second list is
cuttingPatches that contains names of target patches whose values are to be mapped
from the source internal field through which the target patch cuts. In the situation where
the target patch only cuts through part of the source internal field, e.g. bottom left target
patch in our example, those values within the internal field are mapped and those outside
remain unchanged. An example mapFieldsDict dictionary is shown below:
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Internal target patches:
can be mapped using cuttingPatches

Target field geometry
Source field geometry

mapped using patchMap
Coincident patches: can be

Figure 5.15: Mapping inconsistent fields

16
17 patchMap (lid movingWall);
18
19 cuttingPatches ();
20
21
22 // ************************************************************************* //

mapFields <source dir>

5.8.3 Mapping parallel cases
If either or both of the source and target cases are decomposed for running in parallel,
additional options must be supplied when executing mapFields:

-parallelSource if the source case is decomposed for parallel running;

-parallelTarget if the target case is decomposed for parallel running.
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Boundary conditions

Boundary conditions are specified in field files, e.g. p, U, in time directories. The struc-
ture of these files is introduced in sections 2.1.4 and 4.2.9. They include three entries:
dimensions for the dimensional units; internalField for the initial internal field values;
and, boundaryField where the boundary conditions are specified. The boundaryField
requires an entry for each patch in the mesh. The patches are specified in the boundary
file; below is a sample file from a 2D incompressibleFluid example in OpenFOAM.

5
(

outlet
{

type patch;
nFaces 320;
startFace 198740;

}
up
{

type symmetry;
inGroups List<word> 1(symmetry);
nFaces 760;
startFace 199060;

}
hole
{

type wall;
inGroups List<word> 1(wall);
nFaces 1120;
startFace 199820;

}
frontAndBack
{

type empty;
inGroups List<word> 1(empty);
nFaces 200000;
startFace 200940;

}
inlet
{

type patch;
nFaces 320;
startFace 400940;

}
)
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The corresponding pressure field file, p, is shown below.

16 dimensions [0 2 -2 0 0 0 0];
17
18 internalField uniform 0;
19
20 boundaryField
21 {
22 inlet
23 {
24 type zeroGradient;
25 }
26 outlet
27 {
28 type fixedValue;
29 value uniform 0;
30 }
31 up
32 {
33 type symmetry;
34 }
35 hole
36 {
37 type zeroGradient;
38 }
39 frontAndBack
40 {
41 type empty;
42 }
43 }
44
45 // ************************************************************************* //

The boundaryField is a sub-dictionary containing an entry for every patch in the
mesh. Each entry begins with the patch name and configures the boundary condition
through entries in a sub-dictionary. A type entry is required for every patch which
specifies the type of boundary condition. The examples above include zeroGradient and
fixedValue conditions corresponding to generic patches defined in the boundary file. They
also include symmetry and empty types corresponding to equivalent constraint patches,
e.g. the up patch is defined as symmetry in the mesh and uses a symmetry condition in the
field file.

For details about the main boundary conditions used in OpenFOAM, refer to Chapter
4 of Notes on Computational Fluid Dynamics: General Principles.

6.1 Patch selection in field files
There are three different ways an entry can be specified for a patch in the boundaryField
of a field file: 1) by patch name; 2) by group name; 3) matching a patch name with a
regular expression. They are listed here in order of precedence which is obeyed if multiple
entries are valid of a particular patch. The different specifications can be illustrated by
imagining a mesh with the following patches.

• inlet: a generic patch.

• lowerWall and upperWall: two wall patches.

• outletSmall, outletMedium and outletLarge: three outlet patches of generic type,
all in a patch group named outlet.

Then imagine the following boundaryField for a field, e.g. p, corresponding to the patches
above.

OpenFOAM-13

https://doc.cfd.direct/notes/cfd-general-principles/boundary-conditions
https://doc.cfd.direct/notes/cfd-general-principles/boundary-conditions


6.1 Patch selection in field files U-179

boundaryField
{

inlet
{

type zeroGradient;
}
".*Wall"
{

type zeroGradient;
}
outletSmall
{

type fixedValue;
value uniform 1;

}
outlet
{

type fixedValue;
value uniform 0;

}
}

In this example, the inlet field entry is read for the inlet patch, following rule 1 above
(matching patch name). Similarly, the outletSmall entry will be read for the patch of
the same name.

The outletMedium and outletLarge patches do not have matching entries in the field
file, so they instead the outlet entry will be applied (rule 2), since it matches the group
name to which the patches belong. Note that the outletSmall patch does not use the
outlet entry because a matching patch entry takes precedence over a matching group
entry.

Finally, the lowerWall and upperWall match the regular expression ".*Wall". Regu-
lar expressions are described in section 4.2.13; they must be included in double quotations
". . . ". The ".*" component matches any expression (including nothing), so matches the
wall patch names here. The regular expression could use word grouping to provide a more
precise match to the patch names, e.g.

"(lower|upper)Wall"
{

type zeroGradient;
}

Alternatively a patch entry could cover the wall patches taking advantage of the fact that
every non-generic patch is automatically placed in a group of the same name as its type,
as discussed in section 5.3.6. In this case, all wall patches are placed in a group named
wall, so the following entry would be read for both patches.

wall
{

type zeroGradient;
}
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6.2 Geometric constraints
Section 5.3 describes the mesh boundary, which is split into patches and written in the
mesh boundary file. Each patch includes a type entry which can be specified as a generic
patch, a wall or a geometric constraint, e.g. empty, symmetry, cyclic etc.

For each geometric constraint type for a patch in the mesh, there is an equivalent
boundary condition type that must be applied to the same patch in the boundaryField
of a field file. The type names in the mesh and boundaryField are the same, e.g. the
symmetry boundary condition must be applied to a symmetry patch.

To simplify the configuration of field files, OpenFOAM includes a file named setCon-
straintTypes in the $FOAM_ETC/caseDicts of the installation. The setConstraintTypes file
contains the following entries.

9 cyclic
10 {
11 type cyclic;
12 }
13
14 cyclicSlip
15 {
16 type cyclicSlip;
17 }
18
19 nonConformalCyclic
20 {
21 type nonConformalCyclic;
22 value $internalField;
23 }
24
25 nonConformalError
26 {
27 type nonConformalError;
28 }
29
30 empty
31 {
32 type empty;
33 }
34
35 processor
36 {
37 type processor;
38 value $internalField;
39 }
40
41 processorCyclic
42 {
43 type processorCyclic;
44 value $internalField;
45 }
46
47 nonConformalProcessorCyclic
48 {
49 type nonConformalProcessorCyclic;
50 value $internalField;
51 }
52
53 symmetryPlane
54 {
55 type symmetryPlane;
56 }
57
58 symmetry
59 {
60 type symmetry;
61 }
62
63 wedge
64 {
65 type wedge;
66 }
67
68 internal

OpenFOAM-13



6.3 Basic boundary conditions U-181

69 {
70 type internal;
71 }
72
73
74 // ************************************************************************* //

The file exploits the fact that a patch which is a geometric constraint is automatically
included in a group of the constraint name, e.g. a symmetry patch is in a group named
symmetry. The entries therefore set a boundary type for each constraint group (to the
name of the group). All constraint conditions are covered by an entry for each condition.

The user can then include this file inside the boundaryField of their field files. Since
the file is in the $FOAM_ETC directory it can be included using the special #includeEtc
directive, e.g. in the boundaryField entry below.

boundaryField
{

inlet
{

type zeroGradient;
}

outlet
{

type fixedValue;
value uniform 0;

}

wall
{

type zeroGradient;
}

#includeEtc "caseDicts/setConstraintTypes"
}

With the setContraintTypes file included in the field files, the only patches that generally
need to be configured are: the generic patches, corresponding to open boundaries; and,
wall patches.

6.3 Basic boundary conditions
The main basic boundary condition types available in OpenFOAM are summarised below
using a patch field namedΨ. This is not a complete list; for all types see $FOAM_SRC/fin-
iteVolume/fields/fvPatchFields/basic.

• fixedValue: value of Ψ is specified by value.

• fixedGradient: normal gradient of Ψ (∂Ψ/∂n) is specified by gradient.

• zeroGradient: normal gradient of Ψ is zero.

• calculated: patch field Ψ calculated from other patch fields.
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• mixed: mixed fixedValue/ fixedGradient condition depending on valueFraction (0 ≤
valueFraction ≤ 1) where

valueFraction =

1 corresponds to Ψ = refValue,
0 corresponds to ∂Ψ/∂n = refGradient.

(6.1)

• directionMixed: mixed condition with tensorial valueFraction, to allow different
conditions in normal and tangential directions of a vector patch field, e.g. fixedValue
in the tangential direction, zeroGradient in the normal direction.

6.4 Derived boundary conditions
There are numerous more complex boundary conditions derived from the basic conditions.
For example, many complex conditions are derived from fixedValue, where the value is
calculated by a function of other patch fields, time, geometric information, etc. Some other
conditions derived from mixed/directionMixed switch between fixedValue and fixedGradient
(usually with a zero gradient).

The available boundary conditions can be listed with foamToC using the -scalarBCs
and -vectorBCs options, corresponding to boundary conditions for scalar fields and vector
fields, respectively. For example, for scalar fields, boundary conditions are listed by

foamToC -scalarBCs

These produce long lists which the user can scan through. If the user wants more in-
formation of a particular condition, they can run the foamInfo script which provides a
description of the boundary condition and lists example cases where it is used. For ex-
ample, for the totalPressure boundary condition, run the following.

foamInfo totalPressure

In the following sections we will highlight some particular important, commonly used
boundary conditions.

6.4.1 The inlet/outlet condition
The inletOutlet condition is one derived from mixed, which switches between zeroGradient
when the fluid flows out of the domain at a patch face, and fixedValue, when the fluid is
flowing into the domain. For inflow, the inlet value is specified by an inletValue entry.
A good example of its use can be seen in the damBreakLaminar tutorial, where it is applied
to the phase fraction on the upper atmosphere boundary. Where there is outflow, the
condition is well posed, where there is inflow, the phase fraction is fixed with a value of
0, corresponding to 100% air.

16
17 dimensions [];
18
19 internalField uniform 0;
20
21 boundaryField
22 {
23 #includeEtc "caseDicts/setConstraintTypes"
24
25 wall
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26 {
27 type zeroGradient;
28 }
29
30 atmosphere
31 {
32 type inletOutlet;
33 inletValue $internalField;
34 value $internalField;
35 }
36 }
37
38
39 // ************************************************************************* //

6.4.2 Entrainment boundary conditions
The combination of the totalPressure condition on pressure and pressureInletOutletVelocity
on velocity is extremely common for patches where some inflow occurs and the inlet
flow velocity is not known. The conditions are used on the atmosphere boundary in
the damBreak tutorial, inlet conditions where only pressure is known, outlets where flow
reversal may occur, and where flow in entrained, e.g. on boundaries surrounding a jet
through a nozzle.

The idea behind this combination is that the condition is a standard combination in
the case of outflow, but for inflow the normal velocity is allowed to find its own value.
Under these circumstances, a rapid rise in velocity presents a risk of instability, but the
rise is moderated by the reduction of inlet pressure, and hence driving pressure gradient,
as the inflow velocity increases.

The totalPressure condition specifies:

p =

p0 for outflow
p0 − 1

2ρ|U
2| for inflow (dynamic pressure, subsonic)

(6.2)

where the user specifies p0 through the p0 keyword.
The entrainmentPressure condition also exists which is arguably more robust than

totalPressure by using the normal component of velocity Un ≡ n •U in the calculation for
inflow, i.e.

p =

p0 for outflow
p0 − 1

2ρ|U
2
n| for inflow (dynamic pressure, subsonic)

(6.3)

Solver applications which include buoyancy effects, though a gravitational force ρg
(per unit volume) source term, tend to solve for a pressure field pρgh = p− ρ|g|∆h, where
the hydrostatic component is subtracted based on a height ∆h above some reference. For
such solvers, e.g. interFoam, an equivalent prghTotalPressure condition is applied which
specifies:

pρgh =

p0 for outflow
p0 − ρ|g|∆h− 1

2ρ|U
2| for inflow (dynamic pressure, subsonic)

(6.4)

The pressureInletOutletVelocity condition specifies zeroGradient at all times, except on
the tangential component which is set to fixedValue for inflow, with the tangentialVelocity
defaulting to 0.

The specification of these boundary conditions in the U and p_rgh files, in the damBreak
case, are shown below.

OpenFOAM-13



U-184 Boundary conditions

16
17 dimensions [0 1 -1 0 0 0 0];
18
19 internalField uniform (0 0 0);
20
21 boundaryField
22 {
23 #includeEtc "caseDicts/setConstraintTypes"
24
25 wall
26 {
27 type noSlip;
28 }
29
30 atmosphere
31 {
32 type pressureInletOutletVelocity;
33 value $internalField;
34 }
35 }
36
37
38 // ************************************************************************* //

16
17 dimensions [1 -1 -2 0 0 0 0];
18
19 internalField uniform 0;
20
21 boundaryField
22 {
23 #includeEtc "caseDicts/setConstraintTypes"
24
25 wall
26 {
27 type fixedFluxPressure;
28 value $internalField;
29 }
30
31 atmosphere
32 {
33 type prghTotalPressure;
34 p0 $internalField;
35 }
36 }
37
38
39 // ************************************************************************* //

6.4.3 Fixed flux pressure
In the above example, it can be seen that all the wall boundaries use a boundary condition
named fixedFluxPressure. This boundary condition is used for pressure in situations where
zeroGradient is generally used, but where body forces such as gravity and surface tension
are present in the solution equations. The condition adjusts the gradient accordingly.

6.4.4 Time-varying boundary conditions
There are several boundary conditions for which some input parameters are specified by
a function of time (using Function1 functionality) class. The available functions from the
Function1 can be listed by the following command.

find $FOAM_SRC/finiteVolume/fields/fvPatchFields -type f -name "*.H" |\
xargs grep -l Function1 | xargs dirname | sort

They include conditions such as uniformFixedValue, which is a fixedValue condition which
applies a single value which is a function of time through a uniformValue keyword entry.

OpenFOAM-13



6.4 Derived boundary conditions U-185

The Function1 is specified by a keyword following the uniformValue entry, followed
by parameters that relate to the particular function. The Function1 options can be listed
by foamToC by

foamToC -table scalarFunction1

The most relevant functions are those in the core OpenFOAM library which can be filtered
using grep

foamToC -table scalarFunction1 | grep OpenFOAM

Most of those function objects are described below.

• constant: constant value.

• table: inline list of (time value) pairs; interpolates values linearly between times.

• tableFile: as above, but with data supplied in a separate file.

• square: square-wave function.

• squarePulse: single square pulse.

• sine: sine function.

• one and zero: constant one and zero values.

• polynomial: polynomial function using a list (coeff exponent) pairs.

• coded: function specified by user coding.

• scale: scales a given value function by a scalar scale function; both entries can be
themselves Function1; scale function is often a ramp function (below), with value
controlling the ramp value.

• linearRamp, quadraticRamp, exponentialSqrRamp, halfCosineRamp, quarter-
CosineRamp and quarterSineRamp: monotonic ramp functions which ramp from 0
to 1 over specified duration.

• reverseRamp: reverses the values of a ramp function, e.g. from 1 to 0.

• add: adds two Function1s together.

• normalise: scales a given Function1 so that the integral over time equals 1 (the
integral value can be changed with the scale Function1).

• repeat: repeats a given ’value’ function with a given period or frequency, and with
an optional shift along the time axis.

There are some other function objects, more commonly to describe properties as a function
of something, e.g. temperature.

• uniformTable: Tabulated property function that linearly interpolates between given
values.
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• nonUniformTable: Non-uniform tabulated property function that linearly interpo-
lates between the values.

Examples or a time-varying inlet for a scalar are shown below.

inlet
{

type uniformFixedValue;
uniformValue constant 2;

}

inlet
{

type uniformFixedValue;
uniformValue table ((0 0) (10 2));

}

inlet
{

type uniformFixedValue;
uniformValue polynomial ((1 0) (2 2)); // = 1*t^0 + 2*t^2

}

inlet
{

type uniformFixedValue;
uniformValue
{

type tableFile;
format csv;
nHeaderLine 4; // number of header lines
refColumn 0; // time column index
componentColumns (1); // data column index
separator ","; // optional (defaults to ",")
mergeSeparators no; // merge multiple separators
file "dataTable.csv";

}
}

inlet
{

type uniformFixedValue;
uniformValue
{

type square;
frequency 10;
amplitude 1;
scale 2; // Scale factor for wave
level 1; // Offset

}
}

inlet
{

type uniformFixedValue;
uniformValue
{

type sine;
frequency 10;
amplitude 1;
scale 2; // Scale factor for wave
level 1; // Offset

}
}

input // ramp from 0 -> 2, from t = 0 -> 0.4
{

type uniformFixedValue;
uniformValue
{

type scale;
scale linearRamp;
start 0;
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duration 0.4;
value 2;

}
}

input // ramp from 2 -> 0, from t = 0 -> 0.4
{

type uniformFixedValue;
uniformValue
{

type scale;
scale reverseRamp;
ramp linearRamp;
start 0;
duration 0.4;
value 2;

}
}

inlet // pulse with value 2, from t = 0 -> 0.4
{

type uniformFixedValue;
uniformValue
{

type scale;
scale squarePulse
start 0;
duration 0.4;
value 2;

}
}

inlet
{

type uniformFixedValue;
uniformValue coded;
name pulse;
codeInclude
#{

#include "mathematicalConstants.H"
#};

code
#{

return scalar
(

0.5*(1 - cos(constant::mathematical::twoPi*min(x/0.3, 1)))
);

#};
}
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Chapter 7

Post-processing

This chapter describes options for post-processing with OpenFOAM. Post-processing in
its most general sense involves data processing (processing results) and visualisation. The
functionality for data processing is described in sections 7.2, 7.3 and 7.4. For visualisation,
OpenFOAM relies on ParaView, a third-party open source application described in the
example cases in chapter 2, with some additional information provided in the following
section 7.1. Other methods of visualisation using third party software are described in
section 7.5.

7.1 ParaView/paraFoam graphical user interface (GUI)
OpenFOAM includes a native reader module to visualise data with ParaView, an open-
source, visualisation application. The module comprises of the PVFoamReader and vtkPV-
Foam libraries, which currently supports version 5.10.1 of ParaView. It is recommended
that this version of ParaView is used, although it is possible that the latest binary re-
lease of the software will run adequately. Further details about ParaView can be found at
http://www.paraview.org.

ParaView uses the Visualisation Toolkit (VTK) as its data processing and rendering
engine and can therefore read any data in VTK format. OpenFOAM includes a variety
of tools which can write data in VTK and other supported formats, which can be read
directly by ParaView. Entire case data can be converted to VTK using the foamToVTK
utility if the user wishes to process their results without the OpenFOAM reader.

In summary, we recommend the reader module for ParaView as the primary visualisa-
tion option for OpenFOAM. Alternatively OpenFOAM data can be converted into VTK
format to be read by ParaView or any other VTK-based graphics tools.

7.1.1 Overview of ParaView/paraFoam
paraFoam is a script that launches ParaView using the reader module supplied with Open-
FOAM. It is executed like any of the OpenFOAM utilities either by the single command
from within the case directory or with the -case option with the case path as an argu-
ment, e.g.:

paraFoam -case <caseDir>

ParaView is launched and opens the window shown in Figure 7.1. The case is controlled
from the left panel, which contains the following:

http://www.paraview.org


U-190 Post-processing

Figure 7.1: The ParaView window

• The Pipeline Browser lists the modules opened in ParaView, where the selected
modules are highlighted in blue and the graphics for the given module can be en-
abled/disabled by clicking the eye button alongside;

• The Properties panel contains the input selections for the case, such as times, regions
and fields; it includes the Display panel that controls the visual representation of
the selected module, e.g. colours;

• Other panels can be selected from the View menu, including the Information panel
which gives case statistics such as mesh geometry and size.

ParaView operates a tree-based structure in which data can be filtered from the top-
level case module to create sets of sub-modules. For example, a contour plot of, say,
pressure could be a sub-module of the case module which contains all the pressure data.
The strength of ParaView is that the user can create a number of sub-modules and display
whichever ones they need to create the desired image or animation. For example, they
may add some solid geometry, mesh and velocity vectors, to a contour plot of pressure,
switching any of the items on and off as necessary.

The general operation of the system is based on the user making a selection and then
clicking the green Apply button in the Properties panel. The additional buttons are: the
Reset button which can be used to reset the settings if necessary; and, the Delete button
that will delete the active module.
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Check to enable ParaView to display
polyhedral cells and polygonal faces correctly

The user can select the internalField
region and/or individual patches

The user can select the fields
read into the case module

Figure 7.2: The Properties panel for the case module

7.1.2 The Parameters panel

The Properties window for the case module includes the Parameters panel that contains the
settings for mesh, fields and global controls. The controls are described in Figure 7.2. The
user can select mesh and field data which is loaded for all time directories into ParaView.
The buttons in the Current Time Controls and VCR Controls toolbars then select the
time data to be displayed, as shown is section 7.1.4.

As with any operation in ParaView, the user must click Apply after making any changes
to any selections. The Apply button is highlighted in green to alert the user if changes have
been made but not accepted. This method of operation has the advantage of allowing the
user to make a number of selections before accepting them, which is particularly useful
in large cases where data processing is best kept to a minimum.

If new data is written to time directories while the user is running ParaView, the user
must load the additional time directories by checking the Refresh Times button. Where
there are occasions when the case data changes on file and ParaView needs to load the
changes, the user can also toggle the Cache Mesh button in the Parameters panel and
apply the changes.
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Outline, surface, wireframe, surface with edges

Colour surface by. . .

Set colour map range / appearance
Change image opacity

e.g. to make transparent

Figure 7.3: The Display panel

7.1.3 The Display panel
The Properties window contains the Display panel that includes the settings for visualising
the data for a given case module. The following points are particularly important:

• the data range may not be automatically updated to the max/min limits of a field,
so the user should take care to select Rescale at appropriate intervals, in particular
after loading the initial case module;

• clicking the Edit Color Map button, brings up a window in which there are two
panels:

1. The Color Scale panel in which the colours within the scale can be chosen. The
standard blue to red colour scale for CFD can be selected by clicking Choose
Preset and searching for Blue to Red Rainbow and selecting.

2. The Color Legend panel has a toggle switch for a colour bar legend and contains
settings for the layout of the legend, e.g. font.

• the underlying mesh can be represented by selecting Wireframe in the Represent-
ation menu of the Style panel;

• the geometry, e.g. a mesh (if Wireframe is selected), can be visualised as a single
colour by selecting Solid Color from the Color By menu and specifying the colour
in the Set Ambient Color window;
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• the image can be made translucent by editing the value in the Opacity text box (1
= solid, 0 = invisible) in the Style panel.

7.1.4 The button toolbars
ParaView duplicates functionality from pull-down menus at the top of the main window
and the major panels, within the toolbars below the main pull-down menus. The displayed
toolbars can be selected from Toolbars in the main View menu. The default layout with
all toolbars is shown in Figure 7.4 with each toolbar labelled. The function of many of
the buttons is clear from their icon and, with tooltips enabled in the Help menu, the user
is given a concise description of the function of any button.

main controls VCR controls time selector

common and data analysis filters camera controls
visual representation

ruler centre/axes

Figure 7.4: Toolbars in ParaView

7.1.5 Manipulating the view
This section describes operations for setting and manipulating the view in ParaView.
Firstly, the View Settings are available in the Render View panel below the Display
panel in the Properties window. Settings that are generally important only appear when
the user checks the gearwheel button at the top of the Properties window, next to the
search bar. These advanced properties include setting the background colour, where white
is often a preferred choice for creating images for printed and website material.

The Lights button opens detailed lighting controls within the Light Kit panel. A
separate Headlight panel controls the direct lighting of the image. Checking the Headlight
button with white light colour of strength 1 seems to help produce images with strong
bright colours, e.g. with an isosurface.

The Camera Parallel Projection is the usual choice for CFD, especially for 2D cases,
and so should generally be checked. Other settings include Cube Axes which displays axes
on the selected object to show its orientation and geometric dimensions.

The general Settings are selected from the Edit menu, which opens a general Options
window with General, Camera, Render View Color Arrays and Color Palette menu items.

The General panel controls some default behaviour of ParaView. In particular, there
is an Auto Apply button that enables ParaView to accept changes automatically without
clicking the green Apply button in the Properties window. For larger cases, this option is
generally not recommended: the user does not generally want the image to be re-rendered
between each of a number of changes he/she selects, but be able to apply a number of
changes to be re-rendered in their entirety once.

The Render View panel contains level of detail (LOD) which controls the rendering
of the image while it is being manipulated, e.g. translated, resized, rotated; lowering the
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levels set by the sliders, allows cases with large numbers of cells to be re-rendered quickly
during manipulation.

The Camera panel includes control settings for 3D and 2D movements. This presents
the user with a map of rotation, translate and zoom controls using the mouse in combi-
nation with Shift- and Control-keys. The map can be edited to suit by the user.

7.1.6 Contour plots
A contour plot is created by selecting Contour from the Filter menu at the top menu
bar. The filter acts on a given module so that, if the module is the 3D case module itself,
the contours will be a set of 2D surfaces that represent a constant value, i.e. isosurfaces.
The Properties panel for contours contains an Isosurfaces list that the user can edit, most
conveniently by the New Range window. The chosen scalar field is selected from a pull
down menu.

Very often a user will wish to create a contour plot across a plane rather than producing
isosurfaces. To do so, the user must first use the Slice filter to create the cutting plane,
on which the contours can be plotted. The Slice filter allows the user to specify a cutting
Plane, Box or Sphere in the Slice Type menu by a center and normal/radius respectively.
The user can manipulate the cutting plane like any other using the mouse.

The user can then run the Contour filter on the cut plane to generate contour lines.

7.1.7 Vector plots
Vector plots are created using the Glyph filter. The filter reads the field selected in
Vectors and offers a range of Glyph Types for which the Arrow provides a clear vector
plot images. Each glyph has a selection of graphical controls in a panel which the user
can manipulate to best effect.

The remainder of the Properties panel contains mainly the Scale Mode menu for the
glyphs. The most common options for Scale Mode are: Vector, where the glyph length
is proportional to the vector magnitude; and, Off where each glyph is the same length.
The Set Scale Factor parameter controls the base length of the glyphs.

Vectors are by default plotted on cell vertices but, very often, we wish to plot data at
cell centres. This is done by first applying the Cell Centers filter to the case module,
and then applying the Glyph filter to the resulting cell centre data.

7.1.8 Streamlines
Streamlines are created by first creating tracer lines using the Stream Tracer filter. The
tracer Seed panel specifies a distribution of tracer points over a Line Source or Point
Cloud. The user can view the tracer source, e.g. the line, but it is displayed in white, so
they may need to change the background colour in order to see it.

The distance the tracer travels and the length of steps the tracer takes are specified in
the text boxes in the main Stream Tracer panel. The process of achieving desired tracer
lines is largely one of trial and error in which the tracer lines obviously appear smoother
as the step length is reduced but with the penalty of a longer calculation time.

Once the tracer lines have been created, the Tubes filter can be applied to the Tracer

module to produce high quality images. The tubes follow each tracer line and are not
strictly cylindrical but have a fixed number of sides and given radius. When the number
of sides is set above, say, 10, the tubes do however appear cylindrical, but again this adds
a computational cost.
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7.1.9 Image output
The simplest way to output an image to file from ParaView is to select Save Screenshot
from the File menu. On selection, a window appears in which the user can select the
resolution for the image to save. There is a button that, when clicked, locks the aspect
ratio, so if the user changes the resolution in one direction, the resolution is adjusted in
the other direction automatically. After selecting the pixel resolution, the image can be
saved. To achieve high quality output, the user might try setting the pixel resolution to
1000 or more in the x-direction so that when the image is scaled to a typical size of a
figure in an A4 or US letter document, perhaps in a PDF document, the resolution is
sharp.

7.1.10 Animation output
To create an animation, the user should first select Save Animation from the File menu.
A dialogue window appears in which the user can specify a number of things including
the image resolution. The user should specify the resolution as required. The other
noteworthy setting is number of frames per timestep. While this would intuitively be
set to 1, it can be set to a larger number in order to introduce more frames into the
animation artificially. This technique can be particularly useful to produce a slower
animation because some movie players have limited speed control, particularly over mpeg
movies.

On clicking the Save Animation button, another window appears in which the user spec-
ifies a file name root and file format for a set of images. On clicking OK, the set of files will
be saved according to the naming convention “<fileRoot>_<imageNo>.<fileExt>”,
e.g. the third image of a series with the file root “animation”, saved in jpg format would
be named “animation_0002.jpg” (<imageNo> starts at 0000).

Once the set of images are saved the user can convert them into a movie using their
software of choice. One option is to use the built in foamCreateVideo script from the
command line whose usage is shown with the -help option.

7.2 Post-processing command line interface (CLI)
Post-processing is provided directly within OpenFOAM through the command line in-
cluding data processing, sampling (e.g. probes, graph plotting) visualisation, case control
and run-time I/O. Functionality can be executed by:

• conventional post-processing, a data processing activity that occurs after a simula-
tion has run;

• run-time processing, data processing that is performed during the running of a
simulation.

Both approaches have advantages. Conventional post-processing allows the user to choose
how to analyse data after the results are obtained. Run-time processing offers greater
flexibility because it has access to all the data in the database of the run at all times,
rather than just the data written during the simulation. It also allows the user to monitor
processed data during a simulation and provides a greater level of convenience because
the processed results can be available immediately to the user when the simulation ends.

There are 3 methods of post-processing that cover the options described above.
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• The case can be configured to include run-time processing during the simulation.

• The foamPostProcess utility provides conventional post-processing of data after a
simulation is completed.

• The foamPostProcessutility is run with a -solver which provides additional access
to data available on the database for the particular solver.

All modes of post-processing access the same functionality implemented in OpenFOAM
in the function object framework. Function objects can be listed using foamToC by the
following command.

foamToC -functionObjects

The list represents the underlying post-processing functionality. Almost all the function-
ality is packaged into a set of configured tools that are conveniently integrated within the
post-processing CLI. Those tools are located in $FOAM_ETC/caseDicts/functions and are
listed by running foamPostProcesswith the -list option.

foamPostProcess -list

This produces a list of tools catalogued in section 7.3.

7.2.1 Run-time data processing
When a user wishes to process data during a simulation, they need to configure the case
accordingly. The configuration process is as follows, using an example of monitoring flow
rate at an outlet patch named outlet.

Firstly, the user should include the patchFlowRate function in a functions file in the
case system directory. The user can copy a template functions file using foamGet as follows

foamGet functions

Within the functions file, they include the patchFlowRate function with the #includeFunc
directive (e.g. by un-commenting the example entry):

#includeFunc patchFlowRate

Note: prior to v12, the functions were included in a functions sub-dictionary in the
case controlDict file, as shown below.

functions
{

#includeFunc patchFlowRate
... other function objects here ...

}
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It is still possible to do this, but using a separate functions file is advantageous because it
avoids reading function objects in applications that do not use them. That will include
the functionality in the patchFlowRate configuration file, located in the directory hierarchy
beginning with $FOAM_ETC/caseDicts/postProcessing.

The configuration of patchFlowRate requires the name of the patch to be supplied.
Option 1 for doing this is that the user copies the patchFlowRate file into their case
system directory. The foamGet script copies the file conveniently, e.g.

foamGet patchFlowRate

The patch name can be edited in the copied file to be outlet. When the solver is run,
it will pick up an included function in the local case system directory, in precedence
over $FOAM_ETC/caseDicts/postProcessing. The flow rate through the patch will be
calculated and written out into a file within a directory named postProcessing.

Option 2 for specifying the patch name is to provide the name as an argument to
the patchFlowRate in the #includeFunc directive, using the syntax keyword=entry.

#includeFunc patchFlowRate(patch=outlet)

In the case where the keyword is field or fields, only the entry is needed when
specifying an argument to a function. For example, if the user wanted to calculate and
write out the magnitude of velocity into time directories during a simulation they could
simply add the following to the functions sub-dictionary in controlDict.

#includeFunc mag(U)

This works because the function’s argument U is represented by the keyword field, see
$FOAM_ETC/caseDicts/postProcessing/fields/mag.

Some functions require the setting of many parameters, e.g. to calculate forces and
generate elements for visualisation, etc. For those functions, it is more reliable and con-
venient to copy and configure the function using option 1 (above) rather than through
arguments.

7.2.2 The foamPostProcess utility
The user can execute post-processing functions after the simulation is complete using
the foamPostProcess utility. We can us illustrate the use of foamPostProcessusing the
pitzDailySteady case from section 2.1. The tutorial does not need to be run to use the
case, it can instead be copied into the user’s run directory and run using its accompanying
Allrun script as follows.

run
cp -r $FOAM_TUTORIALS/incompressibleFluid/pitzDailySteady .
cd pitzDaily
./Allrun

Now the user can run execute post-processing functions with foamPostProcess. The -help
option provides a summary of its use.

foamPostProcess -help
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Simple functions like mag can be executed using the -func option; text on the command
line generally needs to be quoted (". . . ") if it contains punctuation characters.

foamPostProcess -func "mag(U)"

This operation calculates and writes the field of magnitude of velocity into a file named
mag(U) in each time directory. Similarly, the patchFlowRate example can be executed
using foamPostProcess.

foamPostProcess -func "patchFlowRate(name=outlet)"

Let us say the user now wants to calculate total pressure = p+ |U|2/2 for incompressible
flow with kinematic pressure, p. The function is available, named totalPressureIncompress-
ible, which requires a rhoInf parameter to be specified. The user could attempt first to
run as follows.

foamPostProcess -func "totalPressureIncompressible(rhoInf=1.2)"

This returns the following error message.

--> FOAM FATAL IO ERROR:
request for volVectorField U from objectRegistry region0 failed

The error message is telling the user that the velocity field U is not loaded. For the
function to work, both the field needs to be loaded using the -field option as follows.

foamPostProcess -func "totalPressureIncompressible(rhoInf=1.2)" -field U

A more complex example is calculating wall shear stress using the wallShearStress
function.

foamPostProcess -fields "(p U)" -func wallShearStress

Even loading relevant fields, the post-processing fails with the following message.

--> FOAM FATAL ERROR:
Unable to find turbulence model in the database

The message is telling us that the foamPostProcessutility has not constructed the necessary
models, i.e. a turbulence model, that the incompressibleFluid solver module used when
running the simulation. This is a situation where we need to post-process (as opposed
to run-time process) using the -solver option modelling will be available that the post-
processing function needs.

foamPostProcess -solver incompressibleFluid -func wallShearStress

Note that no fields need to be supplied, e.g. using "-field U", because incompressibleFluid
module constructs and stores the required fields. Functions can also be selected by the
#includeFunc directive in functions file, instead of the -func option.
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7.3 Post-processing functionality
The packaged function objects are catalogued in this section. Each packaged function
object is a configuration file stored in $FOAM_ETC/caseDicts/postProcessing. As a re-
minder, they can be listed by the following command.

foamPostProcess -list

7.3.1 Field calculation
age Calculates and writes out the time taken for a particle to travel from an inlet to the

location.

components Writes the component scalar fields (e.g. Ux, Uy, Uz) of a field (e.g. U).

CourantNo Calculates the Courant Number field from the flux field.

cylindrical Transforms a vector field into cylindrical coordinates.

ddt Calculates the Eulerian time derivative of a field.

div Calculates the divergence of a field.

enstrophy Calculates the enstrophy of the velocity field.

fieldAverage Calculates and writes the time averages of a given list of fields.

flowType Calculates and writes the flowType of velocity field where: -1 = rotational flow;
0 = simple shear flow; +1 = planar extensional flow.

grad Calculates the gradient of a field.

Lambda2 Calculates and writes the second largest eigenvalue of the sum of the square of
the symmetrical and anti-symmetrical parts of the velocity gradient tensor.

log Calculates the natural logarithm of the specified scalar field.

MachNo Calculates the Mach Number field from the velocity field.

mag Calculates the magnitude of a field.

magSqr Calculates the magnitude-squared of a field.

massFractions Calculates mass-fraction fields from mole-fraction fields, or moles fields,
and a multi-component thermophysical model.

moleFractions Calculates mole-fraction fields from the mass-fraction fields of a multi-
component thermophysical model.

power Calculates power fields, corresponding to pressure, shear and total stress.

PecletNo Calculates the Peclet Number field from the flux field.

Q Calculates the second invariant of the velocity gradient tensor.

randomise Adds a random component to a field, with a specified perturbation magnitude.
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reconstruct Calculates the reconstruction of a field; e.g. to construct a cell-centred velocity
U from the face-centred flux phi.

scale Multiplies a field by a scale factor

shearStress Calculates the shear stress, outputting the data as a volSymmTensorField.

specieAdvectiveFlux Calculate the advective flux of a specified species as a surfaceScalarField

specieDiffusionFlux Calculate the diffusive flux of a specified species as a surfaceScalarField

specieFlux Calculate the combined flux of a specified species as a surfaceScalarField

streamFunction Writes the stream-function pointScalarField, calculated from the spec-
ified flux surfaceScalarField.

surfaceInterpolate Calculates the surface interpolation of a field.

totalEnthalpy Calculates and writes the total enthalpy ha + K as the volScalarField
Ha.

tr Calculates the trace of a tensor field.

turbulenceFields Calculates specified turbulence fields and stores it on the database.

turbulenceIntensity Calculates and writes the turbulence intensity field I.

volField Converts a volField::Internal into a volField.

vorticity Calculates the vorticity field, i.e. the curl of the velocity field.

wallHeatFlux Calculates the heat flux at wall patches, outputting the data as a volVec-
torField.

wallHeatTransferCoeff Calculates the estimated incompressible flow heat transfer coeffi-
cient at wall patches, outputting the data as a volScalarField.

wallShearStress Calculates the shear stress at wall patches, outputting the data as a vol-
VectorField.

writeCellCentres Writes the cell-centres volVectorField and the three component fields as
volScalarFields; useful for post-processing thresholding.

writeCellVolumes Writes the cell-volumes volScalarField

writeVTK Writes out specified objects in VTK format, e.g. fields, stored on the case
database.

yPlus Calculates the turbulence y+, outputting the data as a yPlus field.
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7.3.2 Field operations
add Add a list of fields.

divide From the first field, divide the remaining fields in the list.

multiply Multiply a list of fields.

subtract From the first field, subtracts the remaining fields in the list.

uniform Create a uniform field.

7.3.3 Forces and force coefficients
forceCoeffsCompressible Calculates lift, drag and moment coefficients by summing forces

on specified patches for a case where the solver is compressible (pressure is in units
M/(LTˆ2), e.g. Pa).

forceCoeffsIncompressible Calculates lift, drag and moment coefficients by summing forces
on specified patches for a case where the solver is incompressible (pressure is kine-
matic, e.g. mˆ2/sˆ2).

forcesCompressible Calculates pressure and viscous forces over specified patches for a case
where the solver is compressible (pressure is in units M/(LTˆ2), e.g. Pa).

forcesIncompressible Calculates pressure and viscous forces over specified patches for a
case where the solver is incompressible (pressure is kinematic, e.g. mˆ2/sˆ2).

7.3.4 Sampling for graph plotting
graphCell Writes graph data for specified fields along a line, specified by start and end

points. One graph point is generated in each cell that the line intersects.

graphCellFace Writes graph data for specified fields along a line, specified by start and
end points. One graph point is generated on each face and in each cell that the line
intersects.

graphCutLayerAverage Writes graphs of cell values, volume-averaged in planes perpendic-
ular to a given direction or in contours of a given distance field, adaptively grading
the distribution of graph points to match the resolution of the mesh.

graphFace Writes graph data for specified fields along a line, specified by start and end
points. One graph point is generated on each face that the line intersects.

graphLayerAverage Generates plots of fields averaged over the layers in the mesh.

graphPatchCutLayerAverage Writes graphs of patch face values, area-averaged in planes
perpendicular to a given direction. It adaptively grades the distribution of graph
points to match the resolution of the mesh

graphUniform Writes graph data for specified fields along a line, specified by start and end
points. A specified number of graph points are used, distributed uniformly along
the line.
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7.3.5 Lagrangian data
dsmcFields Calculate intensive fields UMean, translationalT, internalT, overallT from

averaged extensive fields from a DSMC calculation.

stopAtEmptyClouds Stops the run when all clouds are empty, i.e. have no particles.

7.3.6 Volume fields
cellMax Writes out the maximum cell value for one or more fields.

cellMaxMag Writes out the maximum cell value magnitude for one or more fields.

cellMin Writes out the minimum cell value for one or more fields.

cellMinMag Writes out the maximum cell value magnitude for one or more fields.

volAverage Writes out the volume-weighted average of one or more fields.

volIntegrate Writes out the volume integral of one or more fields.

7.3.7 Numerical data
residuals For specified fields, writes out the initial residuals for the first solution of each

time step; for non-scalar fields (e.g. vectors), writes the largest of the residuals for
each component (e.g. x, y, z).

7.3.8 Control
adjustTimeStepToChemistry Adjusts the time step to a chemistry model’s bulk chemical

time scales

adjustTimeStepToCombustion Adjusts the time step to a combustion model’s bulk reaction
time scales

removeObjects Removes the specified objects, e.g. fields, stored in the case database.

stopAtClockTime Stops the run when the specified clock time in second has been reached
and optionally write results before stopping.

stopAtFile Stops the run when the file stop is created in the case directory.

stopAtTimeStep Stops the run if the time-step drops below the specified value in seconds
and optionally write results before stopping.

time Writes run time, CPU time and clock time and optionally the CPU and clock times
per time step.

timeStep Writes the time step to a file for monitoring.

userTimeStep Writes the user time step to a file for monitoring.

writeObjects Writes out specified objects, e.g. fields, stored on the case database.
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7.3.9 Pressure tools
staticPressureIncompressible Calculates the pressure field in normal units, i.e. Pa in SI,

from kinematic pressure by scaling by a specified density.

totalPressureCompressible Calculates the total pressure field in normal units, i.e. Pa in SI,
for a case where the solver is compressible.

totalPressureIncompressible Calculates the total pressure field for a case where the solver
is incompressible, in kinematic units, i.e. m2/s2 in SI.

7.3.10 Combustion and chemistry
bXiProgress Writes the combustion progress of the Weller b-Xi combustion models.

Qdot Calculates and outputs the heat release rate for the current combustion model.

reactionRates Writes volume averaged reaction rates in kmol/m3/s for each reaction.

specieReactionRates Writes volume averaged reaction rates in kmol/m3/s for each species
and each reaction.

XiReactionRate Writes the turbulent flame-speed and reaction-rate volScalarFields for
the Xi-based combustion models.

7.3.11 Multiphase
phaseForces Calculates the blended interfacial forces acting on a given phase, i.e. drag,

virtual mass, lift, wall-lubrication and turbulent dispersion. Note that it works only
in solver post-processing mode and in combination with multiphaseEulerFoam. For
a simulation involving more than two phases, the accumulated force is calculated
by looping over all phasePairs the phase is a part of.

phaseMap Writes the phase-fraction map field alpha.map with incremental value ranges
for each phase e.g., with values 0 for water, 1 for air, 2 for oil, etc.

populationBalanceSetPhaseSizeDistribution Sets the population balance size distribution
for a single phase by overwriting the values in the size-group fraction fields with
values obtained by integrating a given distribution

populationBalanceSetSizeDistribution Sets the population balance size distribution by over-
writing the values in the size-group fraction fields with values obtained by integrating
a given distribution.

populationBalanceMoments Calculates and writes out integral (integer moments) or mean
properties (mean, variance, standard deviation) of a size distribution computed with
multiphaseEulerFoam. Requires solver post-processing.

populationBalanceSizeDistribution Writes out the size distribution computed withmultiphase-
EulerFoam for the entire domain or a volume region. Requires solver post-processing.

wallBoilingProperties Looks up wall boiling wall functions and collects and writes out out
fields of bubble departure diameter, bubble departure frequency, nucleation site
density, effective liquid fraction at the wall, quenching heat flux, and evaporative
heat flux.
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wallBoilingProperty Looks up the wall boiling model and collects and writes out a field of
one of the wall boiling properties.

7.3.12 Probes
boundaryProbes Writes out values of fields at a cloud of points, interpolated to specified

boundary patches.

interfaceHeight Reports the height of the interface above a set of locations. For each
location, it writes the vertical distance of the interface above both the location and
the lowest boundary. It also writes the point on the interface from which these
heights are computed.

internalProbes Writes out values of fields interpolated to a specified cloud of points.

probes Writes out values of fields from cells nearest to specified locations.

7.3.13 Surface fields
faceZoneAverage Calculates the average value of one or more fields on a faceZone.

faceZoneFlowRate Calculates the flow rate through a specified face zone by summing
the flux on patch faces. For solvers where the flux is volumetric, the flow rate is
volumetric; where flux is mass flux, the flow rate is mass flow rate.

patchAverage Calculates the average value of one or more fields on a patch.

patchDifference Calculates the difference between the average values of fields on two spec-
ified patches. Calculates the average value of one or more fields on a patch.

patchFlowRate Calculates the flow rate through a specified patch by summing the flux on
patch faces. For solvers where the flux is volumetric, the flow rate is volumetric;
where flux is mass flux, the flow rate is mass flow rate.

patchIntegrate Calculates the surface integral of one or more fields on a patch.

triSurfaceAverage Calculates the average on a specified triangulated surface by interpo-
lating onto the triangles and integrating over the surface area. Triangles need to be
small (<= cell size) for an accurate result.

triSurfaceDifference Calculates the difference between the average values of fields on two
specified triangulated surfaces.

triSurfaceVolumetricFlowRate Calculates volumetric flow rate through a specified triangu-
lated surface by interpolating velocity onto the triangles and integrating over the
surface area. Triangles need to be small (<= cell size) for an accurate result.

7.3.14 Meshing
checkMesh Executes primitiveMesh::checkMesh to check the distortion of moving meshes.

multiValveEngineState Writes the multi-valve engine motion state providing details of the
piston and valve position, speed etc.
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7.3.15 ‘Pluggable’ solvers
particles Tracks a cloud of parcels driven by the flow of the continuous phase.

phaseScalarTransport Solves a transport equation for a scalar field within one phase of a
multiphase simulation.

scalarTransport Solves a transport equation for a scalar field.

7.3.16 Sampling surfaces
cutPlaneSurface Writes out cut-plane surface files with interpolated field data in VTK

format.

isoSurface Writes out iso-surface files with interpolated field data in VTK format.

patchSurface Writes out patch surface files with interpolated field data in VTK format.

7.3.17 Streamlines
streamlinesLine Writes out files of stream lines with interpolated field data in VTK format,

with initial points uniformly distributed along a line.

streamlinesPatch Writes out files of stream lines with interpolated field data in VTK
format, with initial points randomly selected within a patch.

streamlinesPoints Writes out files of stream lines with interpolated field data in VTK
format, with specified initial points.

streamlinesSphere Writes out files of stream lines with interpolated field data in VTK
format, with initial points randomly selected within a sphere.

7.4 Sampling and monitoring data
There are a set of general post-processing functions for sampling data across the domain
for graphs and visualisation. Several functions also provide data in a single file, in the
form of time versus values, that can be plotted onto graphs. This time-value data can be
monitored during a simulation with the foamMonitor script.

7.4.1 Probing data
The functions for probing data are boundaryProbes, internalProbes and probes as listed in
section 7.3.12. All functions work on the basis that the user provides some point locations
and a list of fields, and the function writes out values of the fields are those locations.
The differences between the functions are as follows.

• probes identifies the nearest cells to the probe locations and writes out the cell
values; data is written into a single file in time-value format, suitable for plotting a
graph.

• boundaryProbes and internalProbes interpolate field data to the probe locations, with
the locations being snapped onto boundaries for boundaryProbes; data sets are writ-
ten to separate files at scheduled write times (like fields). data.
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Generally probes is more suitable for monitoring values at smaller numbers of locations,
whereas the other functions are typically for sampling at large numbers of locations.

As an example, the user could use the pitzDailySteady case set up in section 2.1. The
probes function is best configured by copying the file to the local system directory using
foamGet.

foamGet probes

The user can modify the probeLocations in the probes file as follows.
12
13 #includeEtc "caseDicts/postProcessing/probes/probes.cfg"
14
15 fields (p U);
16 probeLocations
17 (
18 (0.01 0 0)
19 );
20
21 // ************************************************************************* //

The configuration is completed by adding the #includeFunc directive to a functions file
in the system directory.

#includeFunc probes

When the simulation runs, time-value data is written into p and U files in postProcess-
ing/probes/0.

7.4.2 Sampling for graphs
The graphUniform function samples data for graph plotting. To use it, the graphUniform
file can be copied into the system directory to be configured. We will configure it here
using the pitzDaily case as before. The file is simply copied using foamGet.

foamGet graphUniform

The start and end points of the line, along which data is sampled, should be edited; the
entries below provide a vertical line across the full height of the geometry 0.01 m beyond
the back step.

14
15 start (0.01 -0.025 0);
16 end (0.01 0.025 0);
17 nPoints 100;
18
19 fields (U p);
20
21 axis distance; // The independent variable of the graph. Can be "x",
22 // "y", "z", "xyz" (all coordinates written out), or
23 // "distance" (from the start point).
24
25 #includeEtc "caseDicts/postProcessing/graphs/graphUniform.cfg"
26
27 // ************************************************************************* //

The configuration is completed by adding the #includeFunc directive to a functions file
in the system directory.

#includeFunc graphUniform
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Figure 7.5: Graph of Ux at x = 0.01, uniform sampling

The simulation can be then re-run or the user could run the post-processing with the
following command.

foamPostProcess -solver incompressibleFluid

Either way, distance-value data is written into files in time directories within postProc-
essing/graphUniform. The user can quickly display the data for x-component of velocity,
Ux in the last time e.g. 285, by running gnuplot and plotting values.

gnuplot
gnuplot> set style data linespoints
gnuplot> plot "postProcessing/graphUniform/285/line_U.xy" u 2:1

This produces the graph shown in Figure 7.5. This graph corresponds to the velocity
inlet with a uniform profile, rather than a boundary layer profile. The formatting of the
graph is specified in configuration files in $FOAM_ETC/caseDicts/postProcessing/graphs.
The graphUniform.cfg file in that directory includes the configuration as follows.

8
9 #includeEtc "caseDicts/functions/graphs/graph.cfg"

10
11 sets
12 {
13 line
14 {
15 type lineUniform;
16 axis $axis;
17 start $start;
18 end $end;
19 nPoints $nPoints;
20 }
21 }
22
23 // ************************************************************************* //

It shows that the sampling type is lineUniform, meaning the sampling uses a uniform
distribution of points along a line. The other parameters are included by macro expansion
from the main file and specify the line start and end, the number of points and the distance
parameter specified on the horizontal axis of the graph.

An alternative graph function object, graphCell, samples the data at locations nearest
to the cell centres. The user can copy that function object file and configure it as shown
below.
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Figure 7.6: Graph of Ux at x = 0.01, mid-point sampling

13
14 start (0.01 -0.025 0);
15 end (0.01 0.025 0);
16 fields (U p);
17
18 axis distance; // The independent variable of the graph. Can be "x",
19 // "y", "z", "xyz" (all coordinates written out), or
20 // "distance" (from the start point).
21
22 #includeEtc "caseDicts/postProcessing/graphs/graphCell.cfg"
23
24 // ************************************************************************* //

Running the post-processing produces the graph in Figure 7.6.

7.4.3 Live monitoring of data
Functions like probes produce a single file of time-value data, suitable for graph plotting.
When the function is executed during a simulation, the user may wish to monitor the
data live on screen. The foamMonitor script enables this; to discover its functionality, the
user run it with the -help option. The help option includes an example of monitoring
residuals that we can demonstrate in this section.

Firstly, include the residuals function in the functions file.

#includeFunc residuals

The default fields whose residuals are captured are p and U. Should the user wish to
configure other fields, they should make copy the residuals file in their system and edit
the fields entry accordingly. All functions files are within the $FOAM_ETC/caseDicts
directory. The residuals file can be located using foamInfo:

foamInfo residuals

It can then be copied into the system directory conveniently using foamGet:

foamGet residuals

The user can then run the case in the background.
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Figure 7.7: Live plot of residuals with foamMonitor

foamRun > log &

The user should then run foamMonitor using the -l option for a log scale y-axis on the
residuals file as follows. If the command is executed before the simulation is complete,
they can see the graph being updated live.

foamMonitor -l postProcessing/residuals/0/residuals.dat &

It produces the graph of residuals for pressure and velocity in Figure 7.7.

7.4.4 Sampling for visualisation
There are several surfaces and streamlines functions, listed in sections 7.3.16 and 7.3.17,
that can be used to generate files for visualisation. The use of streamlinesLine is already
configured in the pitzDailySteady case.

To generate a cutting plane, the cutPlaneSurface function can be configured by copying
the cutPlaneSurface file to the system directory using foamGet.

foamGet cutPlaneSurface

The file is configured by setting the origin and normal of the plane and the field data to
be sampled. We can edit the file to produce a cutting plane along the pitzDaily geometry,
normal to the z-direction.

16
17 fields (p U);
18
19 interpolate true; // If false, write cell data to the surface triangles.
20 // If true, write interpolated data at the surface points.
21
22 #includeEtc "caseDicts/postProcessing/surface/cutPlaneSurface.cfg"
23
24 // ************************************************************************* //
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The function can be included as normal by adding the #includeFunc to a functions file
in the system directory. Alternatively, the user could test running the function using the
solver post-processing by the following command.

foamPostProcess -solver incompressibleFluid -func cutPlaneSurface

This produces VTK format files of the cutting plane with pressure and velocity data in
time directories in the postProcessing/cutPlaneSurface directory. The user can display
the cutting plane by opening ParaView (type paraview), then doing File->Open and
selecting one of the files, e.g. postProcessing/cutPlaneSurface/285/U_zNormal.vtk as shown
in Figure 7.8.

Figure 7.8: Cutting plane with velocity

7.4.5 The foamVTKSeries script
The previous section describes how to create surface image files in VTK format which
can be read into ParaView and processed. The image files are distributed across time
directories within a sub-directory of the postProcessing directory, e.g. postProcessing/cut-
PlaneSurface/0, postProcessing/cutPlaneSurface/100, postProcessing/cutPlaneSurface/200
and postProcessing/cutPlaneSurface/285 from the case in the previous section.

If the user wishes to read a collection of files into ParaView, e.g. from time directories
within the cutPlaneSurface directory, it would be a somewhat laborious job. In addition,
ParaView would see no connection between the files and that they form a sequence. With-
out sequencing it is then not possible to create an animation from the files (without some
manual effort).

The foamVTKSeries script overcomes this challenge quickly and easily. The user simply
needs to run the script as follows.

foamVTKSeries

The script interrogates the contents of the postProcessing directory and creates a VTK
series file, with extension .vtk.series for each collection of files it encounters. In the cut-
PlaneSurface example, foamVTKSeries would create a file named U_zNormal.vtk.series in
the postProcessing/cutPlaneSurface directory. From ParaView, the user can then load the
series of files by going to File->Open and selecting the U_zNormal.vtk.series file. The files
appear in the Pipeline Browser as a single entity, with each file selectable by changing time
in the Time selector.
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7.5 Third-Party post-processing
OpenFOAM includes the following applications for converting data to formats for post-
processing with several third-party tools. For EnSight, it additionally includes a reader
module, described in the next section.

foamDataToFluent Translates OpenFOAM data to Fluent format.

foamToEnsight Translates OpenFOAM data to EnSight format.

foamToEnsightParts Translates OpenFOAM data to Ensight format. An Ensight part is
created for each cellZone and patch.

foamToGMV Translates foam output to GMV readable files.

foamToTetDualMesh Converts polyMesh results to tetDualMesh.

foamToVTK Legacy VTK file format writer.

smapToFoam Translates a STAR-CD SMAP data file into OpenFOAM field format.

7.5.1 Post-processing with Ensight
OpenFOAM offers the capability for post-processing OpenFOAM cases with EnSight, with
a choice of 2 options:

• converting the OpenFOAM data to EnSight format with the foamToEnsight utility;

• reading the OpenFOAM data directly into EnSight using the ensight74FoamExec
module.

The foamToEnsight utility converts data from OpenFOAM to EnSight file format. For a
given case, foamToEnsight is executed like any normal application. foamToEnsight creates
a directory named Ensight in the case directory, deleting any existing Ensight directory in

the process. The converter reads the data in all time directories and writes into a case file
and a set of data files. The case file is named EnSight_Case and contains details of the
data file names. Each data file has a name of the form EnSight_nn.ext, where nn is an
incremental counter starting from 1 for the first time directory, 2 for the second and so
on and ext is a file extension of the name of the field that the data refers to, as described
in the case file, e.g.T for temperature, mesh for the mesh. Once converted, the data can
be read into EnSight by the normal means:

1. from the EnSight GUI, the user should select Data (Reader) from the File menu;

2. the appropriate EnSight_Case file should be highlighted in the Files box;

3. the Format selector should be set to Case, the EnSight default setting;

4. the user should click (Set) Case and Okay.

EnSight provides the capability of using a user-defined module to read data from a
format other than the standard EnSight format. OpenFOAM includes its own reader
module ensightFoamReader that is compiled into a library named libuserd-foam. It is this
library that EnSight needs to use which means that it must be able to locate it on the
filing system as described in the following section.
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In order to run the EnSight reader, it is necessary to set some environment variables
correctly. The settings are made in the bashrc (or cshrc) file in the $WM_PROJECT_DIR/-
etc/apps/ensightFoam directory. The environment variables associated with EnSight are
prefixed by $CEI_ or $ENSIGHT7_ and listed in Table 7.1. With a standard user setup,
only $CEI_HOME may need to be set manually, to the path of the EnSight installation.

Environment variable Description and options
$CEI_HOME Path where EnSight is installed, eg /usr/local/ensight, added

to the system path by default
$CEI_ARCH Machine architecture, from a choice of names cor-

responding to the machine directory names in
$CEI_HOME/ensight74/machines; default settings include
linux_2.4 and sgi_6.5_n32

$ENSIGHT7_READER Path that EnSight searches for the user defined libuserd-foam
reader library, set by default to $FOAM_LIBBIN

$ENSIGHT7_INPUT Set by default to dummy

Table 7.1: Environment variable settings for EnSight.

The principal difficulty in using the EnSight reader lies in the fact that EnSight expects
that a case to be defined by the contents of a particular file, rather than a directory as it
is in OpenFOAM. Therefore in following the instructions for the using the reader below,
the user should pay particular attention to the details of case selection, since EnSight does
not permit selection of a directory name.

1. from the EnSight GUI, the user should select Data (Reader) from the File menu;

2. The user should now be able to select the OpenFOAM from the Format menu; if not,
there is a problem with the configuration described above.

3. The user should find their case directory from the File Selection window, highlight
one of top 2 entries in the Directories box ending in /. or /.. and click (Set)
Geometry.

4. The path field should now contain an entry for the case. The (Set) Geometry text
box should contain a ‘/’.

5. The user may now click Okay and EnSight will begin reading the data.

6. When the data is read, a new Data Part Loader window will appear, asking which
part(s) are to be read. The user should select Load all.

7. When the mesh is displayed in the EnSight window the user should close the Data
Part Loader window, since some features of EnSight will not work with this window
open.
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Chapter 8

Models and physical properties

OpenFOAM includes a large range of solvers, each designed for a specific class of flow,
as described in section 3.6. Each solver uses a particular set of models which calculate
physical properties and simulate phenomena like transport, turbulence, thermal radiation,
etc.

From OpenFOAM v10 onwards, a distinction is made between material properties
and models for phenomena such as those mentioned above. Properties are specified
in physicalProperties file in the constant directory. In the case of fluids, properties in
physicalProperties relate to a fluid at rest. They are the properties you might look up from
a table in a book, so can be dependent on temperature T , based on some function.

Properties described in physicalProperties do not include any dependency on the flow
itself. For example, turbulence, visco-elasticity and the variation of viscosity ν with
strain-rate, are all specified in a momentumTransport file in the constant directory. This
chapter includes a description of models for viscosity which are dependent on strain-rate
in section 8.3 and turbulence models in section 8.2. Thermophysical models, which are
specified in the physicalProperties file (since they represent temperature dependency of
properties) are described in section 8.1.

8.1 Thermophysical models
Thermophysical models are concerned with: thermodynamics, e.g. relating internal energy
e to temperature T ; transport, e.g. the dependence of properties such as ν on temperature;
and state, e.g. dependence of density ρ on T and pressure p. Thermophysical models are
specified in the physicalProperties dictionary.

A thermophysical model required an entry named thermoType which specifies the
package of thermophysical modelling that is used in the simulation. OpenFOAM includes
a large set of pre-compiled combinations of modelling, built within the code using C++
templates. It can also compile on-demand a combination which is not pre-compiled during
a simulation.

Thermophysical modelling packages begin with the equation of state and then adding
more layers of thermophysical modelling that derive properties from the previous layer(s).
The keyword entries in thermoType reflects the multiple layers of modelling and the un-
derlying framework in which they combined. Below is an example entry for thermoType:

thermoType
{

type hePsiThermo;
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mixture pureMixture;
transport const;
thermo hConst;
equationOfState perfectGas;
specie specie;
energy sensibleEnthalpy;

}

The keyword entries specify the choice of thermophysical models, e.g. transport
constant (constant viscosity, thermal diffusion), equationOfState perfectGas , etc. In
addition there is a keyword entry named energy that allows the user to specify the form
of energy to be used in the solution and thermodynamics. The following sections explains
the entries and options in the thermoType package.

8.1.1 Thermophysical and mixture models
Each solver that uses thermophysical modelling constructs an object of a specific thermo-
physical model class. The model classes are listed below.

fluidThermo Thermophysical model for a general fluid with fixed composition used by the
isoThermalFluid and fluid solver modules.

rhoThermo Thermophysical model for liquids and solids, used by the isothermalFilm and
film solver module.

psiThermo Thermophysical model for gases only, with fixed composition, used by the
shockFluid solver module.

fluidMulticomponentThermo Thermophysical model for fluid of varying composition used
by the multicomponentFluid solver module.

psiuMulticomponentThermo Thermophysical model for combustion that modelled by a
laminar flame speed and regress variable used by the XiFluid solver module.

compressibleMultiphaseVoFMixtureThermo Thermophysical models for multiple phases used
by the compressibleMultiphaseVoF solver module.

solidThermo and solidDisplacementThermo Thermophysical models for solids used by by
the solid and solidDisplacement solver modules, respectively.

The type keyword (in the thermoType sub-dictionary) specifies the underlying thermo-
physical model used by the solver. The user can select from the following.

• hePsiThermo: available for solvers that construct fluidThermo, psiThermo, fluidMul-
ticomponentThermo and .

• heRhoThermo: available for solvers that construct fluidThermo, rhoThermo, fluidMul-
ticomponentThermo, compressibleMultiphaseVoFMixtureThermo.

• heheuPsiThermo: for solvers that construct psiuMulticomponentThermo.

• heSolidThermo: for solvers that construct solidThermo or solidDisplacementThermo.

The mixture specifies the mixture composition. The options available are listed below.

OpenFOAM-13



8.1 Thermophysical models U-215

• pureMixture: mixture with fixed composition, which reads properties from a a
sub-dictionary called mixture.

• multicomponentMixture: mixture with variable composition, with species, e.g. O2,
N2, listed by the species keyword, and properties specified for each specie within
sub-dictionaries named after each specie.

• coefficientWilkeMulticomponentMixture: as multicomponentMixture, but ap-
plies Wilke’s equation to calculate transport properties for the mixture.

• valueMulticomponentMixture: as multicomponentMixture, but applies mole-fract-
ion weighting to calculate transport properties for the mixture.

• homogeneousMixture, inhomogeneousMixture and veryInhomogeneousMixture:
for combustion based on laminar flame speed and regress variables, constituents are
a set of mixtures, such as fuel, oxidant and burntProducts.

8.1.2 Transport model
The transport modelling concerns evaluating dynamic viscosity µ, thermal conductivity
κ and thermal diffusivity α (for internal energy and enthalpy equations). The current
transport models are as follows:

const assumes a constant µ and Prandtl number Pr = cpµ/κ which is simply specified
by a two keywords, mu and Pr, respectively.

sutherland calculates µ as a function of temperature T from a Sutherland coefficient As

and Sutherland temperature Ts, specified by keywords As and Ts; µ is calculated
according to:

µ = As

√
T

1 + Ts/T
. (8.1)

polynomial calculates µ and κ as a function of temperature T from a polynomial of any
order N , e.g.:

µ =
N−1∑
i=0

aiT
i. (8.2)

logPolynomial calculates ln(µ) and ln(κ) as a function of ln(T ) from a polynomial of any
order N ; from which µ, κ are calculated by taking the exponential, e.g.:

ln(µ) =
N−1∑
i=0

ai[ln(T )]i. (8.3)

Andrade calculates ln(µ) and ln(κ) as a polynomial function of T , e.g. for µ:

ln(µ) = a0 + a1T + a2T
2 + a3

a4 + T
. (8.4)

tabulated uses uniform tabulated data for viscosity and thermal conductivity as a function
of pressure and temperature.
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icoTabulated uses non-uniform tabulated data for viscosity and thermal conductivity as
a function of temperature.

WLF (Williams-Landel-Ferry) calculates µ as a function of temperature from coefficients
C1 and C2 and reference temperature Tr specified by keywords C1, C2 and Tr; µ is
calculated according to:

µ = µ0 exp
(
−C1(T − Tr)
C2 + T − Tr

)
(8.5)

8.1.3 Thermodynamic models
The thermodynamic models are concerned with evaluating the specific heat cp from which
other properties are derived. The current thermo models are as follows:

eConst assumes a constant cv and a heat of fusion Hf which is simply specified by a two
values cv Hf , given by keywords Cv and Hf.

eIcoTabulated calculates cv by interpolating non-uniform tabulated data of (T, cp) value
pairs, e.g.:
( (200 1005) (400 1020) );

ePolynomial calculates cv as a function of temperature by a polynomial of any order N :

cv =
N−1∑
i=0

aiT
i. (8.6)

ePower calculates cv as a power of temperature according to:

cv = c0

(
T

Tref

)n0

. (8.7)

eTabulated calculates cv by interpolating uniform tabulated data of (T, cp) value pairs,
e.g.:
( (200 1005) (400 1020) );

hConst assumes a constant cp and a heat of fusion Hf which is simply specified by a two
values cp Hf , given by keywords Cp and Hf.

hIcoTabulated calculates cp by interpolating non-uniform tabulated data of (T, cp) value
pairs, e.g.:
( (200 1005) (400 1020) );

hPolynomial calculates cp as a function of temperature by a polynomial of any order N :

cp =
N−1∑
i=0

aiT
i. (8.8)

hPower calculates cp as a power of temperature according to:

cp = c0

(
T

Tref

)n0

. (8.9)
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hTabulated calculates cp by interpolating uniform tabulated data of (T, cp) value pairs,
e.g.:
( (200 1005) (400 1020) );

janaf calculates cp as a function of temperature T from a set of coefficients taken from
JANAF tables of thermodynamics. The ordered list of coefficients is given in Ta-
ble 8.1. The function is valid between a lower and upper limit in temperature Tl and
Th respectively. Two sets of coefficients are specified, the first set for temperatures
above a common temperature Tc (and below Th), the second for temperatures below
Tc (and above Tl). The function relating cp to temperature is:

cp = R((((a4T + a3)T + a2)T + a1)T + a0). (8.10)

In addition, there are constants of integration, a5 and a6, both at high and low
temperature, used to evaluating h and s respectively.

Description Entry Keyword
Lower temperature limit Tl (K) Tlow
Upper temperature limit Th (K) Thigh
Common temperature Tc (K) Tcommon
High temperature coefficients a0 . . . a4 highCpCoeffs (a0 a1 a2 a3 a4...
High temperature enthalpy offset a5 a5...
High temperature entropy offset a6 a6)
Low temperature coefficients a0 . . . a4 lowCpCoeffs (a0 a1 a2 a3 a4...
Low temperature enthalpy offset a5 a5...
Low temperature entropy offset a6 a6)

Table 8.1: JANAF thermodynamics coefficients.

8.1.4 Composition of each constituent
There is currently only one option for the specie model which specifies the composition
of each constituent. That model is itself named specie, which is specified by the following
entries.

• nMoles: number of moles of component. This entry is only used for combustion
modelling based on regress variable with a homogeneous mixture of reactants; oth-
erwise it is set to 1.

• molWeight in grams per mole of specie.

8.1.5 Equation of state
The following equations of state are available in the thermophysical modelling library.

adiabaticPerfectFluid Adiabatic perfect fluid:

ρ = ρ0

(
p+B

p0 +B

)1/γ

, (8.11)

where ρ0, p0 are reference density and pressure respectively, and B is a model con-
stant.
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Boussinesq Boussinesq approximation

ρ = ρ0 [1− β (T − T0)] (8.12)

where β is the coeffient of volumetric expansion and ρ0 is the reference density at
reference temperature T0.

icoPolynomial Incompressible, polynomial equation of state:

ρ =
N−1∑
i=0

aiT
i, (8.13)

where ai are polynomial coefficients of any order N .

icoTabulated Tabulated data for an incompressible fluid using (T, ρ) value pairs, e.g.
rho ( (200 1010) (400 980) );

incompressiblePerfectGas Perfect gas for an incompressible fluid:

ρ = 1
RT

pref, (8.14)

where pref is a reference pressure.

linear Linear equation of state:

ρ = ψp+ ρ0, (8.15)

where ψ is compressibility (not necessarily (RT )−1).

PengRobinsonGas Peng Robinson equation of state:

ρ = 1
zRT

p, (8.16)

where the complex function z = z(p, T ) can be referenced in the source code in Peng-
RobinsonGasI.H, in the $FOAM_SRC/thermophysicalModels/specie/equationOfState/
directory.

perfectFluid Perfect fluid:

ρ = 1
RT

p+ ρ0, (8.17)

where ρ0 is the density at T = 0.

perfectGas Perfect gas:

ρ = 1
RT

p. (8.18)

rhoConst Constant density:

ρ = constant. (8.19)

rhoTabulated Uniform tabulated data for a compressible fluid, calculating ρ as a function
of T and p.

rPolynomial Reciprocal polynomial equation of state for liquids and solids:
1
ρ
= C0 + C1T + C2T

2 − C3p− C4pT (8.20)

where Ci are coefficients.
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8.1.6 Selection of energy variable
The user must specify the form of energy to be used in the solution, either internal energy
e and enthalpy h, and in forms that include the heat of formation ∆hf or not. This choice
is specified through the energy keyword.

We refer to absolute energy where heat of formation is included, and sensible energy
where it is not. For example absolute enthalpy h is related to sensible enthalpy hs by

h = hs +
∑
i

ci∆hif (8.21)

where ci and hif are the molar fraction and heat of formation, respectively, of specie
i. In most cases, we use the sensible form of energy, for which it is easier to account
for energy change due to reactions. Keyword entries for energy therefore include e.g.

sensibleEnthalpy, sensibleInternalEnergy and absoluteEnthalpy.

8.1.7 Thermophysical property data
The basic thermophysical properties are specified for each species from input data. Data
entries must contain the name of the specie as the keyword, e.g. O2, H2O, mixture, followed
by sub-dictionaries of coefficients, including:

specie containing i.e. number of moles, nMoles, of the specie, and molecular weight,
molWeight in units of g/mol;

thermodynamics containing coefficients for the chosen thermodynamic model (see below);

transport containing coefficients for the chosen tranpsort model (see below).

The following is an example entry for a specie named fuel modelled using sutherland
transport and janaf thermodynamics:

fuel
{

specie
{

nMoles 1;
molWeight 16.0428;

}
thermodynamics
{

Tlow 200;
Thigh 6000;
Tcommon 1000;
highCpCoeffs (1.63543 0.0100844 -3.36924e-06 5.34973e-10

-3.15528e-14 -10005.6 9.9937);
lowCpCoeffs (5.14988 -0.013671 4.91801e-05 -4.84744e-08

1.66694e-11 -10246.6 -4.64132);
}
transport
{

As 1.67212e-06;
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Ts 170.672;
}

}

The following is an example entry for a specie named air modelled using const transport
and hConst thermodynamics:

air
{

specie
{

nMoles 1;
molWeight 28.96;

}
thermodynamics
{

Cp 1004.5;
Hf 2.544e+06;

}
transport
{

mu 1.8e-05;
Pr 0.7;

}
}

8.2 Turbulence models
Turbulence modelling is part of general momentum transport which is concerned with
models for the viscous stress in a fluid. Momentum transport is configured through
the momentumTransport file in the constant directory of a case. The file includes the
mandatory simulationType keyword that specifies how turbulence is modelled, which
includes the following options:

laminar uses no turbulence models;

RAS uses Reynolds-averaged simulation (RAS) modelling;

LES uses large-eddy simulation (LES) modelling.

The file then includes a sub-dictionary of the same name as the chosen simulationType
which contains the model selections. A typical example is shown below that uses the k–ε
(k-epsilon) turbulence model.

16
17 simulationType RAS;
18
19 RAS
20 {
21 model kEpsilon;
22
23 turbulence on;
24 }
25
26 // ************************************************************************* //
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The file shows the selected RAS simulation followed by the RAS sub-dictionary containing
the model selections, in particular the model which is set to kEpsilon. The choice of
RAS models is described in section 8.2.1 and more information can be found in Chapter
7 of Notes on Computational Fluid Dynamics: General Principles. The LES
models are listed in section 8.2.3.

Where the laminar option is selected, the sub-dictionary is optional and will default
to a Newtonian model, using the viscosity specified in the physicalProperties file. Other
models, including non-Newtonian and visco-elastic models, are described in section 8.3.
Non-Newtonian models can also be combined with turbulence models (whereas visco-
elastic models cannot).

For a general introduction to turbulence for CFD, the reader may also wish to consult
Chapter 6 of Notes on Computational Fluid Dynamics: General Principles.

8.2.1 Reynolds-averaged simulation (RAS) modelling
If RAS is selected, the choice of RAS modelling is specified in a RAS sub-dictionary which
requires the following entries.

• model: name of RAS turbulence model.

• turbulence: switch to turn the solving of turbulence modelling on/off.

• printCoeffs: optional switch to print model coeffs to terminal at simulation start
up, defaults to false.

• <model>Coeffs: optional dictionary of coefficients for the respective model, de-
faults to standard coefficients.

Turbulence models can be listed by running foamToC with a relevant table listed from
the RAS or LES tables. For example, the RAS tables are listed by running the following
command.

foamToC -table RAS

This returns several sub-tables. The user can then list the models within one of those
tables, e.g. the incompressible models.

foamToC -table RASincompressibleMomentumTransportModel

The RAS models used in the tutorials can be listed using foamSearch with the following
command. The lists of available models are given in the following sections.

foamSearch $FOAM_TUTORIALS momentumTransport RAS/model

Users can locate tutorials using a particular model, e.g. buoyantKEpsilon, using foamInfo.

foamInfo buoyantKEpsilon

OpenFOAM-13

https://doc.cfd.direct/notes/cfd-general-principles/reynolds-averaged-turbulence-modelling
https://doc.cfd.direct/notes/cfd-general-principles/reynolds-averaged-turbulence-modelling
https://doc.cfd.direct/notes/cfd-general-principles/introduction-to-turbulence


U-222 Models and physical properties

8.2.2 RAS turbulence models
For incompressible flows, the RAS model can be chosen from the list below.

LRR Launder, Reece and Rodi Reynolds-stress turbulence model for incompressible flows.

LamBremhorstKE Lam and Bremhorst low-Reynolds number k-epsilon turbulence model
for incompressible flows.

LaunderSharmaKE Launder and Sharma low-Reynolds k-epsilon turbulence model for in-
compressible flows.

LienCubicKE Lien cubic non-linear low-Reynolds k-epsilon turbulence models for incom-
pressible flows.

LienLeschziner Lien and Leschziner low-Reynolds number k-epsilon turbulence model for
incompressible flows.

RNGkEpsilon Renormalization group k-epsilon turbulence model for incompressible flows.

SSG Speziale, Sarkar and Gatski Reynolds-stress turbulence model for incompressible
flows.

ShihQuadraticKE Shih’s quadratic algebraic Reynolds stress k-epsilon turbulence model
for incompressible flows

SpalartAllmaras Spalart-Allmaras one-eqn mixing-length model for incompressible exter-
nal flows.

kEpsilon Standard k-epsilon turbulence model for incompressible flows.

kEpsilonLopesdaCosta Variant of the standard k-epsilon turbulence model with additional
source terms to handle the changes in turbulence in porous regions for atmospheric
flows over forested terrain.

kOmega Standard high Reynolds-number k-omega turbulence model for incompressible
flows.

kOmega2006 Standard (2006) high Reynolds-number k-omega turbulence model for in-
compressible flows.

kOmegaSST Implementation of the k-omega-SST turbulence model for incompressible
flows.

kOmegaSSTLM Langtry-Menter 4-equation transitional SST model based on the k-omega-
SST RAS model.

kOmegaSSTSAS Scale-adaptive URAS model based on the k-omega-SST RAS model.

kkLOmega Low Reynolds-number k-kl-omega turbulence model for incompressible flows.

qZeta Gibson and Dafa’Alla’s q-zeta two-equation low-Re turbulence model for incom-
pressible flows

realizableKE Realizable k-epsilon turbulence model for incompressible flows.
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v2f Lien and Kalitzin’s v2-f turbulence model for incompressible flows, with a limit im-
posed on the turbulent viscosity given by Davidson et al.

For compressible flows, the RAS model can be chosen from the list below.

LRR Launder, Reece and Rodi Reynolds-stress turbulence model for compressible flows.

LaunderSharmaKE Launder and Sharma low-Reynolds k-epsilon turbulence model for
compressible and combusting flows including rapid distortion theory (RDT) based
compression term.

RNGkEpsilon Renormalization group k-epsilon turbulence model for compressible flows.

SSG Speziale, Sarkar and Gatski Reynolds-stress turbulence model for compressible flows.

SpalartAllmaras Spalart-Allmaras one-eqn mixing-length model for compressible external
flows.

buoyantKEpsilon Additional buoyancy generation/dissipation term applied to the k and
epsilon equations of the standard k-epsilon model.

kEpsilon Standard k-epsilon turbulence model for compressible flows including rapid dis-
tortion theory (RDT) based compression term.

kOmega Standard high Reynolds-number k-omega turbulence model for compressible
flows.

kOmega2006 Standard (2006) high Reynolds-number k-omega turbulence model for com-
pressible flows.

kOmegaSST Implementation of the k-omega-SST turbulence model for compressible flows.

kOmegaSSTLM Langtry-Menter 4-equation transitional SST model based on the k-omega-
SST RAS model.

kOmegaSSTSAS Scale-adaptive URAS model based on the k-omega-SST RAS model.

realizableKE Realizable k-epsilon turbulence model for compressible flows.

v2f Lien and Kalitzin’s v2-f turbulence model for compressible flows, with a limit imposed
on the turbulent viscosity given by Davidson et al.

8.2.3 Large eddy simulation (LES) modelling
If LES is selected, the choice of LES modelling is specified in a LES sub-dictionary which
requires the following entries.

• model: name of LES turbulence model.

• turbulence: switch to turn the solving of turbulence modelling on/off.

• delta: name of delta δ model.

• printCoeffs: optional switch to print model coeffs to terminal at simulation start
up, defaults to false.

OpenFOAM-13



U-224 Models and physical properties

• <model>Coeffs:

• <model>Coeffs: optional dictionary of coefficients for the respective model, to
override the default coefficients.

• <delta>Coeffs: dictionary of coefficients for the delta model.

The LES models used in the tutorials can be listed using foamSearch with the following
command. The lists of available models are given in the following sections.

foamSearch $FOAM_TUTORIALS momentumTransport LES/model

8.2.4 LES turbulence models
For incompressible and compressible flows, the LES model can be chosen from the
list below.

DeardorffDiffStress Differential SGS Stress Equation Model for incompressible flows

Smagorinsky The Smagorinsky SGS model.

SpalartAllmarasDDES SpalartAllmaras DDES turbulence model for incompressible flows

SpalartAllmarasDES SpalartAllmarasDES DES turbulence model for incompressible flows

SpalartAllmarasIDDES SpalartAllmaras IDDES turbulence model for incompressible flows

WALE The Wall-adapting local eddy-viscosity (WALE) SGS model.

dynamicKEqn Dynamic one equation eddy-viscosity model

dynamicLagrangian Dynamic SGS model with Lagrangian averaging

kEqn One equation eddy-viscosity model

kOmegaSSTDES Implementation of the k-omega-SST-DES turbulence model for incom-
pressible flows.

8.2.5 Model coefficients
The coefficients for the RAS turbulence models are given default values in their respective
source code. If the user wishes to override these default values, then they can do so by
adding a sub-dictionary entry to the RAS sub-dictionary file, whose keyword name is that
of the model with Coeffs appended, e.g. kEpsilonCoeffs for the kEpsilon model. If the
printCoeffs switch is on in the RAS sub-dictionary, an example of the relevant ...Coeffs
dictionary is printed to standard output when the model is created at the beginning of a
run. The user can simply copy this into the RAS sub-dictionary file and edit the entries
as required.
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8.2.6 Wall functions
A range of wall function models is available in OpenFOAM that are applied as boundary
conditions on individual patches. This enables different wall function models to be applied
to different wall regions. The choice of wall function model is specified through the
turbulent viscosity field νt in the 0/nut file. For example, a 0/nut file:

16
17 dimensions [0 2 -1 0 0 0 0];
18
19 internalField uniform 0;
20
21 boundaryField
22 {
23 inlet
24 {
25 type calculated;
26 value uniform 0;
27 }
28 outlet
29 {
30 type calculated;
31 value uniform 0;
32 }
33 upperWall
34 {
35 type nutkWallFunction;
36 value uniform 0;
37 }
38 lowerWall
39 {
40 type nutkWallFunction;
41 value uniform 0;
42 }
43 frontAndBack
44 {
45 type empty;
46 }
47 }
48
49
50 // ************************************************************************* //

There are a number of wall function models available in the release, e.g. nutWallFunction,
nutRoughWallFunction, nutUSpaldingWallFunction, nutkWallFunction and nutkAtm-
WallFunction. The user can get the full list of wall function models using foamInfo:

foamToC -scalarBCs | grep nut

Within each wall function boundary condition the user can over-ride default settings for
E, κ and Cµ through optional E, kappa and Cmu keyword entries.

Having selected the particular wall functions on various wall patches in the nut file, the
user should select the following boundary conditions at wall patches for other turbulence
fields.

• epsilon field: apply the epsilonWallFunction to corresponding patches.

• omega field: apply the omegaWallFunction to corresponding patches.

• k, q or R field: apply kqRwallFunction to corresponding patches.

8.3 Transport/rheology models
The momentumTransport file includes any model for the viscous stress in a fluid. That
includes turbulence models, described in the previous section 8.2, but also non-Newtonian
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and visco-elastic models described in this section. These models are described as laminar,
located in $FOAM_SRC/MomentumTransportModels/momentumTransportModels/laminar,
including:

• a family of generalisedNewtonian models for a non-uniform viscosity which is a func-
tion of strain rate γ̇ =

√
2| symm(∇U)|, described in sections 8.3.1, 8.3.2, 8.3.3,

8.3.4, 8.3.5 and 8.3.6;

• a set of visco-elastic models, including Maxwell, Giesekus and PTT (Phan-Thien &
Tanner), described in sections 8.3.7, 8.3.8 and 8.3.9, respectively;

• the lambdaThixotropic model, described in section 8.3.10.

When turbulence modelling is selected in the momentumTransport file, the generalisedNew-
tonian model is used by default to calculate the molecular viscosity. The choice of gen-
eralisedNewtonian model, specified by the viscosityModel keyword, is set to Newtonian
by default, which simply uses the viscosity nu specified in the physicalProperties file. The
following example exposes the default settings used with turbulence modelling.

simulationType RAS

RAS
{

model kEpsilon; // RAS model
turbulence on;
printCoeffs on;

// "laminar" model generalisedNewtonian is used by default
viscosityModel Newtonian; // default

}

While the viscosityModel entry is generally omitted when turbulence models are used,
it can be included to set any of the non-Newtonian generalisedNewtonian models.

When turbulence modelling is not selected, by setting the laminar simulation type,
the user can select any of the laminar models through the model keyword entry in the
laminar sub-dictionary, including the visco-elastic models. The laminar models are listed
by the following command.

foamToC -table laminarincompressibleMomentumTransportModel

If the generalisedNewtonian model is selected, the user must then specify the viscosity
model through the viscosityModel keyword as mentioned above. The viscosity models
are listed by the following command.

foamToC -table generalisedNewtonianViscosityModel

The example below shows how the the Bird-Carreau viscosity model is selected in a
configuration without turbulence modelling.
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simulationType laminar

laminar
{

model generalisedNewtonian;
viscosityModel BirdCarreau;
// ... followed by the BirdCarreau parameters

}

The laminar models still use the viscosity property ν (nu) specified in the physicalProperties
file, e.g.

viscosityModel constant;

nu 1.5e-05;

This viscosity is a single value which is constant in time and uniform over the solution
domain. The non-Newtonian models adopt ν as the zero strain-rate viscosity ν0. The
visco-elastic models incorporate a linear viscous stress using ν, in addition to stress cal-
culated by the respective models. The details of the models are provided in the following
sections.

8.3.1 Bird-Carreau model
The Bird-Carreau generalisedNewtonian model is

ν = ν∞ + (ν0 − ν∞) [1 + (kγ̇)a](n−1)/a (8.22)

where the coefficient a has a default value of 2. An example specification of the model in
momentumTransport is:

viscosityModel BirdCarreau;

nuInf 1e-05;
k 1;
n 0.5;

The constant, uniform viscosity at zero strain-rate, ν0, is specified by nu in the physical-
Properties file.

8.3.2 Cross Power Law model
The Cross Power Law generalisedNewtonian model is:

ν = ν∞ + ν0 − ν∞
1 + (mγ̇)n (8.23)

An example specification of the model in momentumTransport is:
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viscosityModel CrossPowerLaw;

nuInf 1e-05;
m 1;
n 0.5;

The constant, uniform viscosity at zero strain-rate, ν0, is specified by nu in the physical-
Properties file.

8.3.3 Power Law model
The Power Law generalisedNewtonian model provides a function for viscosity, limited by
minimum and maximum values, νmin and νmax respectively. The function is:

ν = kγ̇n−1 νmin ≤ ν ≤ νmax (8.24)

An example specification of the model in momentumTransport is:

viscosityModel powerLaw;

nuMax 1e-03;
nuMin 1e-05;
k 1e-05;
n 0.5;

8.3.4 Herschel-Bulkley model
The Herschel-Bulkley generalisedNewtonian model combines the effects of Bingham plastic
and power-law behaviour in a fluid. For low strain rates, the material is modelled as a
very viscous fluid with viscosity ν0. Beyond a threshold in strain-rate corresponding to
threshold stress τ0, the viscosity is described by a power law. The model is:

ν = min
(
ν0, τ0/γ̇ + kγ̇n−1

)
(8.25)

An example specification of the model in momentumTransport is:

viscosityModel HerschelBulkley;

tau0 0.01;
k 0.001;
n 0.5;

The constant, uniform viscosity at zero strain-rate, ν0, is specified in the physicalProperties
file.

OpenFOAM-13



8.3 Transport/rheology models U-229

8.3.5 Casson model
The Casson generalisedNewtonian model is a basic model used in blood rheology that spec-
ifies minimum and maximum viscosities, νmin and νmax respectively. Beyond a threshold
in strain-rate corresponding to threshold stress τ0, the viscosity is described by a “square-
root” relationship. The model is:

ν =
(√

τ0/γ̇ +
√
m
)2

νmin ≤ ν ≤ νmax (8.26)

An example specification of model parameters for blood is:

viscosityModel Casson;

m 3.934986e-6;
tau0 2.9032e-6;
nuMax 13.3333e-6;
nuMin 3.9047e-6;

8.3.6 General strain-rate function
A strainRateFunction generalisedNewtonian model exists that allows a user to specify
viscosity as a function of strain rate at run-time. It uses the same Function1 function-
ality to specify the function of strain-rate, used by time varying properties in boundary
conditions described in section 6.4.4. An example specification of the model in momen-
tumTransport is shown below using the polynomial function:

viscosityModel strainRateFunction;

function polynomial ((0 0.1) (1 1.3));

8.3.7 Maxwell model
The Maxwell laminar visco-elastic model solves an equation for the fluid stress tensor τ:

∂τ
∂t

+∇ • (Uτ) = 2 symm [τ •∇U]− 2νM
λ

symm(∇U)− 1
λ

τ (8.27)

where νM (nuM) is the “Maxwell” viscosity and λ (lambda) is the relaxation time. An
example specification of model parameters is shown below:

simulationType laminar;

laminar
{

model Maxwell;

MaxwellCoeffs
{

nuM 0.002;
lambda 0.03;

}
}
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If an additional constant, uniform viscosity at zero strain-rate, ν0, is specified in the
physicalProperties file, the model becomes equivalent to an Oldroyd-B visco-elastic model.
The Maxwell model includes a multi-mode option where τ is a sum of stresses, each with
an associated relaxation time λ.

8.3.8 Giesekus model
The Giesekus laminar visco-elastic model is similar to the Maxwell model but includes an
additional “mobility” term in the equation for τ:

∂τ
∂t

+∇ • (Uτ) = 2 symm [τ •∇U]− 2νM
λ

symm(∇U)− 1
λ

τ − αG

νM
[τi • τi] (8.28)

where αG (alphaG) is the mobility parameter. An example specification of model param-
eters is shown below:

simulationType laminar;

laminar
{

model Giesekus;

GiesekusCoeffs
{

nuM 0.002;
lambda 0.03;
alphaG 0.1;

}
}

The Giesekus model includes a multi-mode option where τ is a sum of stresses, each with
an associated relaxation time λ and mobility coefficient αG.

8.3.9 Phan-Thien-Tanner (PTT) model
The Phan-Thien-Tanner (PTT) laminar visco-elastic model is also similar to the Maxwell
model but includes an additional “extensibility” term in the equation for τ, suitable for
polymeric liquids:

∂τ
∂t

+∇ • (Uτ) = 2 symm [τ •∇U]− 2νM
λ

symm(∇U)− 1
λ
exp

(
− ελ

νM
tr(τ)

)
τ (8.29)

where ε (epsilon) is the extensibility parameter. An example specification of model
parameters is shown below:

simulationType laminar;

laminar
{

model PTT;
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PTTCoeffs
{

nuM 0.002;
lambda 0.03;
epsilon 0.25;

}
}

The PTT model includes a multi-mode option where τ is a sum of stresses, each with an
associated relaxation time λ and extensibility coefficient ε.

8.3.10 Lambda thixotropic model
The Lambda Thixotropic laminar model calculates the evolution of a structural parameter
λ (lambda) according to:

∂λ

∂t
+∇ • (Uλ) = a(1− λ)b − cγ̇dλ (8.30)

with model coefficients a, b, c and d. The viscosity ν is then calculated according to:

ν = ν∞

1−Kλ2
(8.31)

where the parameter K =
√
ν∞/ν0. The viscosities ν0 and ν∞ are limiting values corre-

sponding to λ = 1 and λ = 0.
An example specification of the model in momentumTransport is:

simulationType laminar;

laminar
{

model lambdaThixotropic;

lambdaThixotropicCoeffs
{

a 1;
b 2;
c 1e-3;
d 3;
nu0 0.1;
nuInf 1e-4;

}
}
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Index

/*...*/
C++ syntax, U-73

//
C++ syntax, U-73
OpenFOAM file syntax, U-92

# include
C++ syntax, U-73

#include
C++ syntax, U-66

bounded keyword, U-114
<delta>Coeffs keyword, U-224
<model>Coeffs keyword, U-221, U-224
1-dimensional mesh, U-140
1D mesh, U-140
2-dimensional mesh, U-140
2D mesh, U-140

0 directory, U-92

add post-processing, U-201
add keyword, U-185
addLayers keyword, U-153
addLayersControls keyword, U-153
adiabaticFlameT utility, U-90
adiabaticPerfectFluid model, U-217
adjointShapeOptimizationFoam solver, U-84
adjustableRunTime

keyword entry, U-47, U-108
adjustTimeStep keyword, U-46, U-109
adjustTimeStepToChemistry post-processing, U-

202
adjustTimeStepToCombustion post-processing,

U-202
age post-processing, U-199
agglomerator keyword, U-120
algorithm

SIMPLE, U-27
all keyword, U-164
alphaContactAngle

boundary condition, U-43
annulus keyword, U-163
ansysToFoam utility, U-85
applications, U-63

Apply button, U-190, U-193
applyBoundaryLayer utility, U-84
arc

keyword entry, U-143
As keyword, U-215
ascii

keyword entry, U-108
Auto Apply button, U-193
autoPatch utility, U-86
axes

right-handed, U-144
right-handed rectangular Cartesian, U-18

axi-symmetric cases, U-151
axi-symmetric mesh, U-140

background
process, U-21, U-76

backward
keyword entry, U-111

backward-facing step, U-18
basic

boundary conditions, U-181
beginTime keyword, U-109
binary

keyword entry, U-108
block

expansion ratio, U-145
blockMesh utility, U-85
blocking

keyword entry, U-75
blockMesh utility, U-142
blockMeshDict

dictionary, U-19, U-21, U-56, U-142
blocks keyword, U-21, U-143, U-144
boundary

of a mesh, U-139
boundary

dictionary, U-139, U-142
boundary keyword, U-143, U-147
boundary condition

alphaContactAngle, U-43
calculated, U-181
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cyclic, U-141
cyclic, U-141
directionMixed, U-182
empty, U-18, U-140
entrainmentPressure, U-183
fixedGradient, U-181
fixedValue, U-181, U-184
flowRateInletVelocity, U-36
inletOutlet, U-182
mixed, U-182
nonConformalCyclic, U-141
noSlip, U-24
patch, U-140
pressureInletOutletVelocity, U-183
processor, U-141
processor, U-141
setup, U-23
symmetry, U-140
symmetry, U-141
symmetryPlane, U-140, U-142
totalPressure, U-183
uniformFixedValue, U-184
wall, U-26
wall, U-43, U-140, U-142
wedge, U-140, U-151
zeroGradient, U-181

boundary conditions, U-177
basic, U-181
constraint, U-180
derived, U-182

boundaryProbes post-processing, U-204
boundaryField keyword, U-23
boundaryFoam solver, U-83
bounded keyword, U-114
Boussinesq model, U-218
box keyword, U-163
boxTurb utility, U-84
breaking of a dam, U-40
BSpline

keyword entry, U-144
buoyantKEpsilon model, U-223
burntProducts keyword, U-215
button

Apply, U-190, U-193
Auto Apply, U-193
Cache Mesh, U-28, U-191
Camera Parallel Projection, U-22, U-193
Choose Preset, U-192
Delete, U-190
Edit Color Legend Properties, U-30
Edit Color Map, U-192
Lights, U-193

Refresh Times, U-191
Rescale, U-29
Reset, U-190
Set Ambient Color, U-192

bXiProgress post-processing, U-203

C++ syntax
/*...*/, U-73
//, U-73
# include, U-73
#include, U-66

C1 keyword, U-216
C2 keyword, U-216
Cache Mesh button, U-28, U-191
cacheAgglomeration keyword, U-120
calculated

boundary condition, U-181
Camera window panel, U-193
Camera Parallel Projection button, U-22, U-193
case

management, U-123
cases, U-91
castellatedMesh keyword, U-153
castellatedMeshControls

dictionary, U-155–U-157
castellatedMeshControls keyword, U-153
ccm26ToFoam utility, U-85
CEI_ARCH

environment variable, U-212
CEI_HOME

environment variable, U-212
cell

expansion ratio, U-145
cellMax post-processing, U-202
cellMaxMag post-processing, U-202
cellMin post-processing, U-202
cellMinMag post-processing, U-202
cellLimited

keyword entry, U-112
cells

dictionary, U-142
cellsAcrossSpan keyword, U-158
cellZone class, U-162
cellZone keyword, U-164
cellZones file, U-162
cfx4ToFoam utility, U-85
cfx4ToFoam utility, U-169
changeDictionary utility, U-84
checkMesh utility, U-86
checkMesh post-processing, U-204
checkMesh utility, U-170
chemFoam solver, U-83
chemkinToFoam utility, U-90
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Choose Preset button, U-192
class

cellZone, U-162
faceZone, U-162
flipMap, U-162
pointZone, U-162
vector, U-95

class keyword, U-94
clear keyword, U-165
clockTime

keyword entry, U-108
coded keyword, U-185
coefficientWilkeMulticomponentMixture

keyword entry, U-215
collapseEdges utility, U-87
Color Arrays window panel, U-193
Color By menu, U-192
Color Legend window panel, U-192
Color Palette window panel, U-193
Color Scale window panel, U-192
compressibleMultiphaseVoFMixtureThermo

model, U-214
combinePatchFaces utility, U-87
comments, U-73
Common menu, U-31
Common and Data Analysis menu, U-31
commsType keyword, U-75
components post-processing, U-61, U-199
compressibleMultiphaseVoF solver module, U-81
compressibleVoF solver module, U-81
consistent keyword, U-27
constant directory, U-91
constant

keyword entry, U-45
constant keyword, U-185
constraint

boundary conditions, U-180
Contour

menu entry, U-34
control

of global parameters, U-105
of time, U-107

controlDict
dictionary, U-26, U-47, U-59, U-91, U-175

controlDict file, U-105
controls

global, U-105
overriding global, U-106

convertToMeters keyword, U-143
convertToMeters keyword, U-143
coordinate system, U-18
corrected

keyword entry, U-115, U-116
Courant number, U-46
CourantNo post-processing, U-199
Cp keyword, U-216
cpuTime

keyword entry, U-108
CrankNicolson

keyword entry, U-111
createBaffles utility, U-86
createExternalCoupledPatchGeometry utility, U-

84
createPatch utility, U-86
createZones utility, U-86
createNonConformalCouples utility, U-86
createNonConformalCouples utility, U-141
createPatch utility, U-167
createZones utility, U-165
csv

keyword entry, U-109
Current Time Controls menu, U-28, U-191
cutPlaneSurface post-processing, U-205
Cv keyword, U-216
cyclic

boundary condition, U-141
cyclic

boundary condition, U-141
cylinder keyword, U-163
cylindrical post-processing, U-199

dam
breaking of a, U-40

datToFoam utility, U-85
ddt post-processing, U-199
ddtSchemes keyword, U-27
DeardorffDiffStress model, U-224
DebugSwitches keyword, U-106
decomposePar utility, U-90
decomposePar utility, U-76, U-78
decomposeParDict

dictionary, U-76
decomposition

of field, U-76
of mesh, U-76

defaultPatch keyword, U-143
defaultValues keyword, U-44
deformedGeom utility, U-86
Delete button, U-190
delta keyword, U-223
deltaT keyword, U-108
dependencies, U-66
dependency lists, U-66
derived

boundary conditions, U-182
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diagonal
keyword entry, U-118, U-120

DIC
keyword entry, U-119, U-120

DICGaussSeidel
keyword entry, U-120

dictionary
PIMPLE, U-122
SIMPLE, U-122
blockMeshDict, U-19, U-21, U-56, U-142
boundary, U-139, U-142
castellatedMeshControls, U-155–U-157
cells, U-142
controlDict, U-26, U-47, U-59, U-91, U-175
decomposeParDict, U-76
faces, U-139, U-142
fvSchemes, U-48, U-91, U-109, U-110
fvSolution, U-91, U-117
fvSchemes, U-47
momentumTransport, U-24, U-46, U-220
neighbour, U-139
owner, U-139
physicalProperties, U-24, U-58, U-213
points, U-139, U-142

difference keyword, U-165
DILU

keyword entry, U-119, U-120
dimension

checking, U-95
dimensional units, U-95
DimensionedConstants keyword, U-106
dimensions keyword, U-23
directionMixed

boundary condition, U-182
directory

0, U-92
Make, U-66
constant, U-91
etc, U-105
polyMesh, U-91, U-138
processorN , U-78
run, U-17, U-91
system, U-91

Display window panel, U-22, U-190, U-192
distance

keyword entry, U-157
distributed keyword, U-80
div post-processing, U-199
div(phi,e) keyword, U-113
div(phi,U) keyword, U-113
divide post-processing, U-201
divSchemes keyword, U-39, U-110

Documentation keyword, U-106
dsmcInitialise utility, U-84
dsmcFields post-processing, U-202
dsmcFoam solver, U-83
dynamicLagrangian model, U-224
dynamicKEqn model, U-224

edgeGrading keyword, U-145
edges keyword, U-143
Edit menu, U-193
Edit Color Legend Properties button, U-30
Edit Color Map button, U-192
electrostaticFoam solver, U-83
empty

boundary condition, U-18, U-140
endTime keyword, U-27, U-108
energy keyword, U-214, U-219
engineCompRatio utility, U-88
engineSwirl utility, U-84
ensight

keyword entry, U-109
ENSIGHT7_INPUT

environment variable, U-212
ENSIGHT7_READER

environment variable, U-212
ensightFoamReader utility, U-211
enstrophy post-processing, U-199
entrainmentPressure

boundary condition, U-183
environment variable

CEI_ARCH, U-212
CEI_HOME, U-212
ENSIGHT7_INPUT, U-212
ENSIGHT7_READER, U-212
FOAM_APPLICATION, U-101
FOAM_CASENAME, U-101
FOAM_CASE, U-101
FOAM_FILEHANDLER, U-78
FOAM_RUN, U-91
WM_ARCH_OPTION, U-69
WM_ARCH, U-69
WM_CC, U-69
WM_CFLAGS, U-69
WM_COMPILER_LIB_ARCH, U-70
WM_COMPILER_TYPE, U-70
WM_COMPILER, U-70
WM_COMPILE_OPTION, U-70
WM_CXXFLAGS, U-69
WM_CXX, U-69
WM_DIR, U-69
WM_LABEL_OPTION, U-69
WM_LABEL_SIZE, U-69
WM_LDFLAGS, U-70
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WM_LINK_LANGUAGE, U-69, U-70
WM_MPLIB, U-69
WM_OPTIONS, U-69
WM_OSTYPE, U-70
WM_PRECISION_OPTION, U-69
WM_PROJECT_DIR, U-69
WM_PROJECT_INST_DIR, U-69
WM_PROJECT_USER_DIR, U-69
WM_PROJECT_VERSION, U-69
WM_PROJECT, U-69
WM_THIRD_PARTY_DIR, U-69
wmake, U-69

equationOfState keyword, U-214
equilibriumFlameT utility, U-90
equilibriumCO utility, U-90
errorReduction keyword, U-162
etc directory, U-105
Euler

keyword entry, U-111
exponentialSqrRamp keyword, U-185
expansionRatio keyword, U-160
extrude2DMesh utility, U-85
extrudeMesh utility, U-85
extrudeToRegionMesh utility, U-85

face keyword, U-164
faceAgglomerate utility, U-84
faceZoneAverage post-processing, U-204
faceZoneFlowRate post-processing, U-204
faceAreaPair

keyword entry, U-120
faces

dictionary, U-139, U-142
faceZone class, U-162
faceZones file, U-162
FDIC

keyword entry, U-119
featureAngle keyword, U-160
features keyword, U-155
field

decomposition, U-76
field keyword, U-197
fieldAverage post-processing, U-199
fields

mapping, U-175
fields keyword, U-197
file

Make/files, U-68
cellZones, U-162
controlDict, U-105
faceZones, U-162
files, U-66
g, U-46

options, U-66
pointZones, U-162
setConstraintTypes, U-180
snappyHexMeshDict, U-153
handler, U-78, U-79
parallel I/O, U-78

file format, U-92
fileModificationChecking keyword, U-75
fileModificationSkew keyword, U-75
files file, U-66
film solver module, U-82
Filters menu, U-31
finalLayerThickness keyword, U-160
financialFoam solver, U-83
firstLayerThickness keyword, U-160
firstTime keyword, U-108
fixed

keyword entry, U-109
fixedGradient

boundary condition, U-181
fixedValue

boundary condition, U-181, U-184
flattenMesh utility, U-86
flip keyword, U-164
flipMap class, U-162
flipMap keyword, U-164
floatTransfer keyword, U-75
flow

free surface, U-40
flowType post-processing, U-199
flowRateInletVelocity

boundary condition, U-36
fluent3DMeshToFoam utility, U-85
fluentMeshToFoam utility, U-86
fluentMeshToFoam utility, U-169
fluid solver module, U-81
fluidMulticomponentThermo model, U-214
fluidSolver solver module, U-82
fluidThermo model, U-214
OpenFOAM

cases, U-91
foamDataToFluent utility, U-88, U-211
foamDictionary utility, U-90
foamFormatConvert utility, U-90
foamListTimes utility, U-90
foamMeshToFluent utility, U-86
foamPostProcess utility, U-88
foamSetupCHT utility, U-84
foamToC utility, U-90
foamToEnsight utility, U-88, U-211
foamToEnsightParts utility, U-88, U-211
foamToGMV utility, U-88, U-211
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foamToStarMesh utility, U-86
foamToSurface utility, U-86
foamToTetDualMesh utility, U-88, U-211
foamToVTK utility, U-88, U-211
FOAM_APPLICATION

environment variable, U-101
FOAM_CASE

environment variable, U-101
FOAM_CASENAME

environment variable, U-101
FOAM_FILEHANDLER

environment variable, U-78
FOAM_RUN

environment variable, U-91
foamCleanCase script, U-123
foamCloneCase script, U-123
foamCorrectVrt script, U-173
foamDictionary utility, U-123
FoamFile keyword, U-94
foamFormatConvert utility, U-79
foamGet script, U-126
foamInfo script, U-36, U-182
foamListTimes utility, U-37, U-123
foamMultiRun solver, U-15, U-83
foamPostProcess utility, U-196
foamRun solver, U-15, U-28, U-83
foamSearch script, U-111
foamToC utility, U-128
foamUnits utility, U-130
foamVTKSeries utility, U-210
forceCoeffsCompressible post-processing, U-201
forceCoeffsIncompressible post-processing, U-

201
forcesCompressible post-processing, U-201
forcesIncompressible post-processing, U-201
foreground

process, U-21
format keyword, U-94
fuel keyword, U-215
functions solver module, U-82
functions keyword, U-109
fvSchemes

dictionary, U-47
fvSchemes

dictionary, U-48, U-91, U-109, U-110
fvSchemes

menu entry, U-60
fvSolution

dictionary, U-91, U-117

g file, U-46
gambitToFoam utility, U-86
gambitToFoam utility, U-169

GAMG
keyword entry, U-60, U-118, U-120

Gauss cubic
keyword entry, U-112

GaussSeidel
keyword entry, U-120

General window panel, U-193
general

keyword entry, U-109
generalisedNewtonian model, U-226–U-229
geometric-algebraic multi-grid, U-120
geometry keyword, U-150, U-153
Giesekus model, U-226
global

controls, U-105
controls overriding, U-106

gmshToFoam utility, U-86
gnuplot

keyword entry, U-109
grad post-processing, U-199
gradient

Gauss’s theorem, U-60
least square fit, U-60
least squares method, U-60

gradSchemes keyword, U-40, U-110
graphCell post-processing, U-201
graphCutLayerAverage post-processing, U-201
graphPatchCutLayerAverage post-processing, U-

201
graphUniform post-processing, U-201, U-206
graphCellFace post-processing, U-201
graphFace post-processing, U-201
graphFormat keyword, U-109
graphLayerAverage post-processing, U-201

halfCosineRamp keyword, U-185
heheuPsiThermo

keyword entry, U-214
Help menu, U-193
hemisphere keyword, U-163
hePsiThermo

keyword entry, U-214
heRhoThermo

keyword entry, U-214
heSolidThermo

keyword entry, U-214
hexRef8 keyword, U-166
Hf keyword, U-216
hierarchical

keyword entry, U-77
highCpCoeffs keyword, U-217
homogeneousMixture keyword, U-215
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icoFoam solver, U-84
icoPolynomial model, U-218
icoTabulated model, U-218
ideasUnvToFoam utility, U-86
ideasToFoam utility, U-169
inhomogeneousMixture keyword, U-215
incompressibleDenseParticleFluid solver module,

U-81
incompressibleDriftFlux solver module, U-81
incompressibleFluid solver module, U-18, U-81
incompressibleMultiphaseVoF solver module, U-

82
incompressiblePerfectGas model, U-218
incompressibleVoF solver module, U-40, U-82
Information window panel, U-190
InfoSwitches keyword, U-106
inGroups keyword, U-142
inletOutlet

boundary condition, U-182
inletValue keyword, U-182
inotify

keyword entry, U-75
inotifyMaster

keyword entry, U-75
inside

keyword entry, U-157
insideCells utility, U-87
insidePoint keyword, U-155, U-157
insideSpan

keyword entry, U-158
insideSurface keyword, U-163
interfaceHeight post-processing, U-204
internalProbes post-processing, U-204
internalField keyword, U-23
interpolationSchemes keyword, U-110
intersection keyword, U-165
invert keyword, U-165
isoSurface post-processing, U-205
isothermalFilm solver module, U-82
isothermalFluid solver module, U-82
iterations

maximum, U-119

kEpsilon model, U-222, U-223
kEpsilonLopesdaCosta model, U-222
kEqn model, U-224
kOmega model, U-222, U-223
kOmega2006 model, U-222, U-223
kOmegaSST model, U-222, U-223
kOmegaSSTDES model, U-224
kOmegaSSTLM model, U-222, U-223
kOmegaSSTSAS model, U-222, U-223
kEpsilon

keyword entry, U-25
keyword

As, U-215
C1, U-216
C2, U-216
Cp, U-216
Cv, U-216
DebugSwitches, U-106
DimensionedConstants, U-106
Documentation, U-106
FoamFile, U-94
Hf, U-216
InfoSwitches, U-106
MULESCorr, U-46, U-48
N2, U-215
O2, U-215
OptimisationSwitches, U-106
Pr, U-215
SIMPLE, U-27, U-28
Tcommon, U-217
Thigh, U-217
Tlow, U-217
Tr, U-216
Ts, U-215
UnitConversions, U-106
bounded, U-114
addLayersControls, U-153
addLayers, U-153
add, U-185
adjustTimeStep, U-46, U-109
agglomerator, U-120
all, U-164
annulus, U-163
beginTime, U-109
blocks, U-21, U-143, U-144
boundaryField, U-23
boundary, U-143, U-147
bounded, U-114
box, U-163
burntProducts, U-215
cacheAgglomeration, U-120
castellatedMeshControls, U-153
castellatedMesh, U-153
cellZone, U-164
cellsAcrossSpan, U-158
class, U-94
clear, U-165
coded, U-185
commsType, U-75
consistent, U-27
constant, U-185
convertToMeters, U-143
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convertToMeters, U-143
cylinder, U-163
ddtSchemes, U-27
defaultPatch, U-143
defaultValues, U-44
deltaT, U-108
delta, U-223
difference, U-165
dimensions, U-23
distributed, U-80
div(phi,U), U-113
div(phi,e), U-113
divSchemes, U-39, U-110
edgeGrading, U-145
edges, U-143
endTime, U-27, U-108
energy, U-214, U-219
equationOfState, U-214
errorReduction, U-162
exponentialSqrRamp, U-185
expansionRatio, U-160
face, U-164
featureAngle, U-160
features, U-155
fields, U-197
field, U-197
fileModificationChecking, U-75
fileModificationSkew, U-75
finalLayerThickness, U-160
firstLayerThickness, U-160
firstTime, U-108
flipMap, U-164
flip, U-164
floatTransfer, U-75
format, U-94
fuel, U-215
functions, U-109
geometry, U-150, U-153
gradSchemes, U-40, U-110
graphFormat, U-109
halfCosineRamp, U-185
hemisphere, U-163
hexRef8, U-166
highCpCoeffs, U-217
homogeneousMixture, U-215
inGroups, U-142
inhomogeneousMixture, U-215
inletValue, U-182
insidePoint, U-155, U-157
insideSurface, U-163
internalField, U-23
interpolationSchemes, U-110

intersection, U-165
invert, U-165
laplacianSchemes, U-110
layers, U-160
leastSquares, U-60
levels, U-157
level, U-157
libs, U-75, U-107
linearRamp, U-185
location, U-94
lowCpCoeffs, U-217
maxAlphaCo, U-46
maxBoundarySkewness, U-161
maxConcave, U-161
maxCo, U-46, U-109
maxDeltaT, U-46
maxFaceThicknessRatio, U-161
maxGlobalCells, U-155
maxInternalSkewness, U-161
maxIter, U-119
maxLocalCells, U-155
maxNonOrtho, U-161
maxPostSweeps, U-121
maxPreSweeps, U-121
maxThicknessToMedialRatio, U-161
maxThreadFileBufferSize, U-79
mergeLevels, U-120
mergePatchPairs, U-143
mergeTolerance, U-153
meshQualityControls, U-153
method, U-77
minArea, U-162
minDeterminant, U-162
minFaceWeight, U-162
minFlatness, U-161
minMedianAxisAngle, U-161
minRefinementCells, U-155
minTetQuality, U-161
minThickness, U-160
minTriangleTwist, U-162
minTwist, U-162
minVolRatio, U-162
minVol, U-162
mixture, U-214, U-215
model, U-25, U-221–U-224
mode, U-157
molWeight, U-219
momentumPredictor, U-122
moveUpdate, U-163
mu, U-215
myProcNo, U-141
nAlphaCorr, U-49
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nBufferCellsNoExtrude, U-161
nCellsBetweenLevels, U-155
nCorrectors, U-122
nFaces, U-139
nFinestSweeps, U-121
nGrow, U-160
nLayerIter, U-161
nMoles, U-219
nNonOrthogonalCorrectors, U-122
nPostSweeps, U-121
nPreSweeps, U-121
nRelaxIter, U-159, U-160
nRelaxedIter, U-161
nSmoothNormals, U-161
nSmoothPatch, U-159
nSmoothScale, U-162
nSmoothSurfaceNormals, U-161
nSmoothThickness, U-161
nSolveIter, U-159
name, U-151
neighbProcNo, U-141
neighbourPatch, U-148
nonUniformTable, U-186
normalise, U-185
normal, U-164
numberOfSubdomains, U-77
nu, U-24, U-45
n, U-77
object, U-94
one, U-185
order, U-77
orient, U-164
oxidant, U-215
pRefCell, U-122
pRefValue, U-122
patchMap, U-175
patch, U-164
periodic, U-165
plane, U-164
polynomial, U-185
postSweepsLevelMultiplier, U-121
preSweepsLevelMultiplier, U-121
preconditioner, U-118, U-119
pressure, U-58
printCoeffs, U-221, U-223
processorWeights, U-77
probeLocations, U-206
processorWeights, U-78
profile, U-36
project, U-150
purgeWrite, U-108
quadraticRamp, U-185

quarterCosineRamp, U-185
quarterSineRamp, U-185
refinementRegions, U-155, U-157
refinementSurfaces, U-155, U-156
refinementRegions, U-157
regionSolvers, U-107
relTol, U-60, U-118, U-119
relativeSizes, U-160
relaxationFactors, U-27
relaxed, U-162
remove, U-165
repeat, U-185
residualControl, U-28, U-39
resolveFeatureAngle, U-155, U-156
reverseRamp, U-185
roots, U-80
runTimeModifiable, U-109
scale, U-185
set, U-165
sigma, U-44
simpleGrading, U-145
simulationType, U-25, U-46, U-220
sine, U-185
smoother, U-121
snGradSchemes, U-110
snapControls, U-153
snap, U-153
solvers, U-117
solver, U-27, U-60, U-107, U-118
specie, U-219
sphere, U-163
squarePulse, U-185
square, U-185
startFace, U-139
startFrom, U-27, U-107
startTime, U-27, U-108
stopAt, U-108
strategy, U-77
surface, U-164
tableFile, U-185
table, U-185
thermoType, U-213
thermodynamics, U-219
thickness, U-160
timeFormat, U-109
timePrecision, U-109
timeScheme, U-110
tolerance, U-60, U-118, U-159
traction, U-58
transport, U-214, U-219
truncatedCone, U-163
turbulence, U-25, U-221, U-223
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type, U-214
uniformTable, U-185
uniformValue, U-184, U-185
union, U-165
unitSet, U-106
valueFraction, U-182
values, U-44
value, U-24, U-181
version, U-94
vertices, U-21, U-143
veryInhomogeneousMixture, U-215
viscosityModel, U-24, U-226
viscosityModel, U-45
wallDist, U-110
writeCompression, U-109
writeControl, U-27, U-47, U-108
writeFormat, U-108
writeInterval, U-27, U-108
writePrecision, U-108
write, U-165
zero, U-185
zones, U-44
<delta>Coeffs, U-224
<model>Coeffs, U-221, U-224

keyword entry
BSpline, U-144
CrankNicolson, U-111
DICGaussSeidel, U-120
DIC, U-119, U-120
DILU, U-119, U-120
Euler, U-111
FDIC, U-119
GAMG, U-60, U-118, U-120
Gauss cubic, U-112
GaussSeidel, U-120
LES, U-220
LUST, U-113
PBiCGStab, U-118
PBiCG, U-118
PCG, U-118
RAS, U-25, U-220
adjustableRunTime, U-47, U-108
arc, U-143
ascii, U-108
backward, U-111
binary, U-108
blocking, U-75
cellLimited, U-112
clockTime, U-108
coefficientWilkeMulticomponentMixture,

U-215
constant, U-45

corrected, U-115, U-116
cpuTime, U-108
csv, U-109
diagonal, U-118, U-120
distance, U-157
ensight, U-109
faceAreaPair, U-120
fixed, U-109
general, U-109
gnuplot, U-109
hePsiThermo, U-214
heRhoThermo, U-214
heSolidThermo, U-214
heheuPsiThermo, U-214
hierarchical, U-77
inotifyMaster, U-75
inotify, U-75
insideSpan, U-158
inside, U-157
kEpsilon, U-25
laminarBL, U-37
laminar, U-220
latestTime, U-108
leastSquares, U-112
limitedLinear, U-113
limited, U-115
linearUpwind, U-113
linear, U-113
line, U-144
localEuler, U-112
masterUncollated, U-78
multicomponentMixture, U-215
multivariateSelection, U-114
nextWrite, U-108
noWriteNow, U-108
nonBlocking, U-75
none, U-111, U-120
orthogonal, U-115
outside, U-157
polyLine, U-144
pureMixture, U-215
raw, U-109
runTime, U-108
scheduled, U-75
scientific, U-109
scotch, U-77
simple, U-77
smoothSolver, U-118
spline, U-144
startTime, U-27, U-108
steadyState, U-27, U-111
symGaussSeidel, U-120
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timeStampMaster, U-75
timeStamp, U-75
timeStep, U-27, U-108
turbulentBL, U-37
uncollated, U-78
uncorrected, U-116
upwind, U-113
valueMulticomponentMixture, U-215
vtk, U-109
writeNow, U-108

kivaToFoam utility, U-86
kkLOmega model, U-222

LamBremhorstKE model, U-222
Lambda2 post-processing, U-199
lambdaThixotropic model, U-226
laminar model, U-231
laminar

keyword entry, U-220
laminarBL

keyword entry, U-37
laplacianFoam solver, U-83
laplacianSchemes keyword, U-110
latestTime

keyword entry, U-108
LaunderSharmaKE model, U-222, U-223
layers keyword, U-160
leastSquares

keyword entry, U-112
leastSquares keyword, U-60
LES

keyword entry, U-220
level keyword, U-157
levels keyword, U-157
libraries, U-63
library

PVFoamReader, U-189
vtkPVFoam, U-189

libs keyword, U-75, U-107
LienCubicKE model, U-222
LienLeschziner model, U-222
Lights button, U-193
limited

keyword entry, U-115
limitedLinear

keyword entry, U-113
line

keyword entry, U-144
linear model, U-218
linear

keyword entry, U-113
linearRamp keyword, U-185
linearUpwind

keyword entry, U-113
localEuler

keyword entry, U-112
location keyword, U-94
log post-processing, U-199
lowCpCoeffs keyword, U-217
LRR model, U-222, U-223
LUST

keyword entry, U-113

MachNo post-processing, U-199
mag post-processing, U-33, U-199
magSqr post-processing, U-199
magneticFoam solver, U-83
Make directory, U-66
make script, U-65
Make/files file, U-68
mapFields utility, U-85
mapFieldsPar utility, U-85
mapFields utility, U-175
mapping

fields, U-175
massFractions post-processing, U-199
masterUncollated

keyword entry, U-78
maxAlphaCo keyword, U-46
maxBoundarySkewness keyword, U-161
maxCo keyword, U-46, U-109
maxConcave keyword, U-161
maxDeltaT keyword, U-46
maxFaceThicknessRatio keyword, U-161
maxGlobalCells keyword, U-155
maximum iterations, U-119
maxInternalSkewness keyword, U-161
maxIter keyword, U-119
maxLocalCells keyword, U-155
maxNonOrtho keyword, U-161
maxPostSweeps keyword, U-121
maxPreSweeps keyword, U-121
maxThicknessToMedialRatio keyword, U-161
maxThreadFileBufferSize keyword, U-79
Maxwell model, U-226
mdInitialise utility, U-85
mdEquilibrationFoam solver, U-84
mdFoam solver, U-84
menu

Color By, U-192
Common and Data Analysis, U-31
Common, U-31
Current Time Controls, U-28, U-191
Edit, U-193
Filters, U-31
Help, U-193
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VCR Controls, U-28, U-191
View, U-190, U-193

menu entry
Contour, U-34
Save Animation, U-195
Save Screenshot, U-195
Settings, U-193
Slice, U-31
Solid Color, U-192
Toolbars, U-193
View Settings, U-193
Wireframe, U-192
fvSchemes, U-60

mergeBaffles utility, U-87
mergeMeshes utility, U-87
mergeLevels keyword, U-120
mergePatchPairs keyword, U-143
mergeTolerance keyword, U-153
mesh

1-dimensional, U-140
1D, U-140
2-dimensional, U-140
2D, U-140
axi-symmetric, U-140
block structured, U-142
boundary, U-139
data, U-138
decomposition, U-76
description, U-137
generation, U-142, U-152
grading, U-142, U-145
split-hex, U-152
Stereolithography (STL), U-152
surface, U-152
zone, U-162

Mesh Parts window panel, U-22
meshQualityControls keyword, U-153
message passing interface

openMPI, U-79
method keyword, U-77
mhdFoam solver, U-83
minArea keyword, U-162
minDeterminant keyword, U-162
minFaceWeight keyword, U-162
minFlatness keyword, U-161
minMedianAxisAngle keyword, U-161
minRefinementCells keyword, U-155
minTetQuality keyword, U-161
minThickness keyword, U-160
minTriangleTwist keyword, U-162
minTwist keyword, U-162
minVol keyword, U-162

minVolRatio keyword, U-162
mirrorMesh utility, U-87
mixed

boundary condition, U-182
mixture keyword, U-214, U-215
mixtureAdiabaticFlameT utility, U-90
mode keyword, U-157
model

Boussinesq, U-218
DeardorffDiffStress, U-224
Giesekus, U-226
LRR, U-222, U-223
LamBremhorstKE, U-222
LaunderSharmaKE, U-222, U-223
LienCubicKE, U-222
LienLeschziner, U-222
Maxwell, U-226
PTT, U-226
PengRobinsonGas, U-218
RNGkEpsilon, U-222, U-223
SSG, U-222, U-223
ShihQuadraticKE, U-222
Smagorinsky, U-224
SpalartAllmarasDDES, U-224
SpalartAllmarasDES, U-224
SpalartAllmarasIDDES, U-224
SpalartAllmaras, U-222, U-223
WALE, U-224
adiabaticPerfectFluid, U-217
buoyantKEpsilon, U-223
compressibleMultiphaseVoFMixtureThermo,

U-214
dynamicKEqn, U-224
dynamicLagrangian, U-224
fluidMulticomponentThermo, U-214
fluidThermo, U-214
generalisedNewtonian, U-226–U-229
icoPolynomial, U-218
icoTabulated, U-218
incompressiblePerfectGas, U-218
kEpsilonLopesdaCosta, U-222
kEpsilon, U-222, U-223
kEqn, U-224
kOmegaSSTDES, U-224
kOmegaSSTLM, U-222, U-223
kOmegaSSTSAS, U-222, U-223
kOmega2006, U-222, U-223
kOmegaSST, U-222, U-223
kOmega, U-222, U-223
kkLOmega, U-222
lambdaThixotropic, U-226
laminar, U-231
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linear, U-218
perfectFluid, U-218
perfectGas, U-218
psiThermo, U-214
psiuMulticomponentThermo, U-214
qZeta, U-222
rPolynomial, U-218
realizableKE, U-222, U-223
rhoConst, U-218
rhoTabulated, U-218
rhoThermo, U-214
solidThermo, U-214
solidDisplacementThermo, U-214
v2f, U-223

model keyword, U-25, U-221–U-224
modular solver, U-15

VoFSolver, U-83
XiFluid, U-81
compressibleMultiphaseVoF, U-81
compressibleVoF, U-81
film, U-82
fluidSolver, U-82
fluid, U-81
functions, U-82
incompressibleDenseParticleFluid, U-81
incompressibleDriftFlux, U-81
incompressibleFluid, U-18, U-81
incompressibleMultiphaseVoF, U-82
incompressibleVoF, U-40, U-82
isothermalFilm, U-82
isothermalFluid, U-82
movingMesh, U-82
multicomponentFluid, U-81
multiphaseEuler, U-82
multiphaseVoFSolver, U-83
shockFluid, U-81
solidDisplacement, U-53, U-82
solid, U-82
twoPhaseSolver, U-82
twoPhaseVoFSolver, U-82

moleFractions post-processing, U-199
molWeight keyword, U-219
momentumPredictor keyword, U-122
momentumTransport

dictionary, U-24, U-46, U-220
moveUpdate keyword, U-163
movingMesh solver module, U-82
MPI

openMPI, U-79
mshToFoam utility, U-86
mu keyword, U-215
MULESCorr keyword, U-46, U-48

multiValveEngineState post-processing, U-204
multicomponentFluid solver module, U-81
multicomponentMixture

keyword entry, U-215
multigrid

geometric-algebraic, U-120
multiphaseEuler solver module, U-82
multiphaseVoFSolver solver module, U-83
multiply post-processing, U-201
multivariateSelection

keyword entry, U-114
myProcNo keyword, U-141

n keyword, U-77
N2 keyword, U-215
nAlphaCorr keyword, U-49
name keyword, U-151
nBufferCellsNoExtrude keyword, U-161
nCellsBetweenLevels keyword, U-155
nCorrectors keyword, U-122
neighbour

dictionary, U-139
neighbourPatch keyword, U-148
neighbProcNo keyword, U-141
netgenNeutralToFoam utility, U-86
nextWrite

keyword entry, U-108
nFaces keyword, U-139
nFinestSweeps keyword, U-121
nGrow keyword, U-160
nLayerIter keyword, U-161
nMoles keyword, U-219
nNonOrthogonalCorrectors keyword, U-122
noise utility, U-88
non-conformal coupling, U-141
nonBlocking

keyword entry, U-75
nonConformalCyclic

boundary condition, U-141
none

keyword entry, U-111, U-120
nonUniformTable keyword, U-186
normal keyword, U-164
normalise keyword, U-185
noSlip

boundary condition, U-24
noWriteNow

keyword entry, U-108
nPostSweeps keyword, U-121
nPreSweeps keyword, U-121
nRelaxedIter keyword, U-161
nRelaxIter keyword, U-159, U-160
nSmoothNormals keyword, U-161
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nSmoothPatch keyword, U-159
nSmoothScale keyword, U-162
nSmoothSurfaceNormals keyword, U-161
nSmoothThickness keyword, U-161
nSolveIter keyword, U-159
nu keyword, U-24, U-45
numberOfSubdomains keyword, U-77

O2 keyword, U-215
objToVTK utility, U-87
object keyword, U-94
one keyword, U-185
Opacity text box, U-193
OpenFOAM

applications, U-63
file format, U-92
libraries, U-63

OpenFOAM file syntax
//, U-92

openMPI
message passing interface, U-79
MPI, U-79

OptimisationSwitches keyword, U-106
Options window, U-193
options file, U-66
order keyword, U-77
orient keyword, U-164
orthogonal

keyword entry, U-115
outside

keyword entry, U-157
owner

dictionary, U-139
oxidant keyword, U-215

paraFoam, U-189
paraFoam, U-21
parallel

running, U-76
parallel I/O, U-78

file handler, U-78
threading support, U-79

Parameters window panel, U-191
ParaView, U-21
particleTracks utility, U-88
particles post-processing, U-205
patch

groups, U-142
patch

boundary condition, U-140
patch keyword, U-164
patch selection, U-178
patchAverage post-processing, U-204

patchDifference post-processing, U-204
patchFlowRate post-processing, U-204
patchIntegrate post-processing, U-204
patchSummary utility, U-90
patchMap keyword, U-175
patchSurface post-processing, U-205
PBiCG

keyword entry, U-118
PBiCGStab

keyword entry, U-118
PCG

keyword entry, U-118
pdfPlot utility, U-88
PDRFoam solver, U-84
PecletNo post-processing, U-199
PengRobinsonGas model, U-218
perfectFluid model, U-218
perfectGas model, U-218
periodic keyword, U-165
phaseForces post-processing, U-203
phaseScalarTransport post-processing, U-205
phaseMap post-processing, U-203
physicalProperties

dictionary, U-24, U-58, U-213
PIMPLE

dictionary, U-122
Pipeline Browser window, U-22, U-190
plane keyword, U-164
plot3dToFoam utility, U-86
points

dictionary, U-139, U-142
pointZone class, U-162
pointZones file, U-162
polyDualMesh utility, U-87
polyLine

keyword entry, U-144
polyMesh directory, U-91, U-138
polynomial keyword, U-185
populationBalanceMoments post-processing, U-

203
populationBalanceSetPhaseSizeDistribution

post-processing, U-203
populationBalanceSetSizeDistribution post-

processing, U-203
populationBalanceSizeDistribution post-

processing, U-203
porousSimpleFoam solver, U-84
post-processing, U-189

CourantNo, U-199
Lambda2, U-199
MachNo, U-199
PecletNo, U-199
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Qdot, U-203
Q, U-199
XiReactionRate, U-203
add, U-201
adjustTimeStepToChemistry, U-202
adjustTimeStepToCombustion, U-202
age, U-199
bXiProgress, U-203
boundaryProbes, U-204
cellMaxMag, U-202
cellMax, U-202
cellMinMag, U-202
cellMin, U-202
checkMesh, U-204
components, U-61, U-199
cutPlaneSurface, U-205
cylindrical, U-199
ddt, U-199
divide, U-201
div, U-199
dsmcFields, U-202
enstrophy, U-199
faceZoneAverage, U-204
faceZoneFlowRate, U-204
fieldAverage, U-199
flowType, U-199
forceCoeffsCompressible, U-201
forceCoeffsIncompressible, U-201
forcesCompressible, U-201
forcesIncompressible, U-201
grad, U-199
graphCellFace, U-201
graphFace, U-201
graphLayerAverage, U-201
graphCell, U-201
graphCutLayerAverage, U-201
graphPatchCutLayerAverage, U-201
graphUniform, U-201, U-206
interfaceHeight, U-204
internalProbes, U-204
isoSurface, U-205
log, U-199
magSqr, U-199
mag, U-33, U-199
massFractions, U-199
moleFractions, U-199
multiValveEngineState, U-204
multiply, U-201
particles, U-205
patchSurface, U-205
patchAverage, U-204
patchDifference, U-204

patchFlowRate, U-204
patchIntegrate, U-204
phaseMap, U-203
phaseForces, U-203
phaseScalarTransport, U-205
populationBalanceMoments, U-203
populationBalanceSetPhaseSizeDistribution,

U-203
populationBalanceSetSizeDistribution, U-

203
populationBalanceSizeDistribution, U-203
power, U-199
probes, U-204, U-205
randomise, U-199
reactionRates, U-203
reconstruct, U-200
removeObjects, U-202
residuals, U-202, U-208
scalarTransport, U-205
scale, U-200
shearStress, U-200
specieAdvectiveFlux, U-200
specieDiffusionFlux, U-200
specieFlux, U-200
specieReactionRates, U-203
staticPressureIncompressible, U-203
stopAtClockTime, U-202
stopAtEmptyClouds, U-202
stopAtFile, U-202
stopAtTimeStep, U-202
streamFunction, U-200
streamlinesLine, U-205
streamlinesPatch, U-205
streamlinesPoints, U-205
streamlinesSphere, U-205
subtract, U-201
surfaceInterpolate, U-200
timeStep, U-202
time, U-202
totalEnthalpy, U-200
totalPressureCompressible, U-203
totalPressureIncompressible, U-203
triSurfaceAverage, U-204
triSurfaceDifference, U-204
triSurfaceVolumetricFlowRate, U-204
tr, U-200
turbulenceFields, U-200
turbulenceIntensity, U-200
uniform, U-201
userTimeStep, U-202
volAverage, U-202
volField, U-200
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volIntegrate, U-202
vorticity, U-200
wallBoilingProperties, U-203
wallBoilingProperty, U-204
wallHeatFlux, U-200
wallHeatTransferCoeff, U-200
wallShearStress, U-200
writeCellCentres, U-200
writeCellVolumes, U-200
writeObjects, U-202
writeVTK, U-200
yPlus, U-200
post-processing
paraFoam, U-189

postSweepsLevelMultiplier keyword, U-121
potentialFoam solver, U-83
power post-processing, U-199
Pr keyword, U-215
preconditioner keyword, U-118, U-119
pRefCell keyword, U-122
pRefValue keyword, U-122
pressure keyword, U-58
pressureInletOutletVelocity

boundary condition, U-183
preSweepsLevelMultiplier keyword, U-121
printCoeffs keyword, U-221, U-223
processorWeights keyword, U-77
probeLocations keyword, U-206
probes post-processing, U-204, U-205
process

background, U-21, U-76
foreground, U-21

processor
boundary condition, U-141

processor
boundary condition, U-141

processorN directory, U-78
processorWeights keyword, U-78
profile keyword, U-36
project keyword, U-150
Properties window, U-191, U-192
Properties window panel, U-190
psiThermo model, U-214
psiuMulticomponentThermo model, U-214
PTT model, U-226
pureMixture

keyword entry, U-215
purgeWrite keyword, U-108
PVFoamReader

library, U-189

Q post-processing, U-199
qZeta model, U-222

Qdot post-processing, U-203
quadraticRamp keyword, U-185
quarterCosineRamp keyword, U-185
quarterSineRamp keyword, U-185

randomise post-processing, U-199
RAS

keyword entry, U-25, U-220
raw

keyword entry, U-109
reorderPatches utility, U-87
reactionRates post-processing, U-203
realizableKE model, U-222, U-223
reconstruct post-processing, U-200
reconstructPar utility, U-90
reconstructPar utility, U-80
redistributePar utility, U-90
refineMesh utility, U-87
refineWallLayer utility, U-87
refinementLevel utility, U-87
refinementRegions keyword, U-157
refinementRegions keyword, U-155, U-157
refinementSurfaces keyword, U-155, U-156
refineMesh utility, U-166
Refresh Times button, U-191
regionSolvers keyword, U-107
relative tolerance, U-119
relativeSizes keyword, U-160
relaxationFactors keyword, U-27
relaxed keyword, U-162
relTol keyword, U-60, U-118, U-119
remove keyword, U-165
removeFaces utility, U-87
removeObjects post-processing, U-202
Render View window, U-193
Render View window panel, U-193
renumberMesh utility, U-87
repeat keyword, U-185
Rescale button, U-29
Reset button, U-190
residualControl keyword, U-28, U-39
residuals

monitoring, U-208
residuals post-processing, U-202, U-208
resolveFeatureAngle keyword, U-155, U-156
reverseRamp keyword, U-185
Reynolds number, U-24
rhoConst model, U-218
rhoPorousSimpleFoam solver, U-84
rhoTabulated model, U-218
rhoThermo model, U-214
RNGkEpsilon model, U-222, U-223
roots keyword, U-80
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rPolynomial model, U-218
run

parallel, U-76
run directory, U-17, U-91
runTime

keyword entry, U-108
runTimeModifiable keyword, U-109

sammToFoam utility, U-86
Save Animation

menu entry, U-195
Save Screenshot

menu entry, U-195
scalarTransport post-processing, U-205
scale post-processing, U-200
scale keyword, U-185
scalePoints utility, U-172
scheduled

keyword entry, U-75
scientific

keyword entry, U-109
scotch

keyword entry, U-77
script

foamCleanCase, U-123
foamCloneCase, U-123
foamCorrectVrt, U-173
foamGet, U-126
foamInfo, U-36, U-182
foamSearch, U-111
make, U-65
wclean, U-70
wmake, U-65

Seed window, U-194
selectCells utility, U-87
set keyword, U-165
Set Ambient Color button, U-192
setAtmBoundaryLayer utility, U-85
setFields utility, U-85
setWaves utility, U-85
setConstraintTypes file, U-180
setFields utility, U-44, U-45
Settings

menu entry, U-193
shallowWaterFoam solver, U-84
shape, U-145
shearStress post-processing, U-200
ShihQuadraticKE model, U-222
shockFluid solver module, U-81
SI units, U-96
sigma keyword, U-44
SIMPLE

algorithm, U-27

SIMPLE keyword, U-27, U-28
SIMPLE

dictionary, U-122
simple

keyword entry, U-77
simpleGrading keyword, U-145
simulationType keyword, U-25, U-46, U-220
sine keyword, U-185
singleCellMesh utility, U-87
Slice

menu entry, U-31
Smagorinsky model, U-224
smapToFoam utility, U-88, U-211
smoother keyword, U-121
smoothSolver

keyword entry, U-118
snap keyword, U-153
snapControls keyword, U-153
snappyHexMesh utility, U-85
snappyHexMeshConfig utility, U-85
snappyHexMesh utility

background mesh, U-154
cell removal, U-156
cell splitting, U-155
mesh layers, U-159
meshing process, U-152
snapping to surfaces, U-158
span refinement, U-158

snappyHexMesh utility, U-152
snappyHexMeshDict file, U-153
snGradSchemes keyword, U-110
solid solver module, U-82
Solid Color

menu entry, U-192
solidDisplacementThermo model, U-214
solidDisplacement solver module, U-53, U-82
solidDisplacementFoam solver, U-58
solidThermo model, U-214
solver

PDRFoam, U-84
adjointShapeOptimizationFoam, U-84
boundaryFoam, U-83
chemFoam, U-83
dsmcFoam, U-83
electrostaticFoam, U-83
financialFoam, U-83
foamMultiRun, U-15, U-83
foamRun, U-15, U-28, U-83
icoFoam, U-84
laplacianFoam, U-83
magneticFoam, U-83
mdEquilibrationFoam, U-84
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mdFoam, U-84
mhdFoam, U-83
porousSimpleFoam, U-84
potentialFoam, U-83
rhoPorousSimpleFoam, U-84
shallowWaterFoam, U-84
solidDisplacementFoam, U-58
modular, U-15

solver keyword, U-27, U-60, U-107, U-118
solver module

VoFSolver, U-83
XiFluid, U-81
compressibleMultiphaseVoF, U-81
compressibleVoF, U-81
film, U-82
fluidSolver, U-82
fluid, U-81
functions, U-82
incompressibleDenseParticleFluid, U-81
incompressibleDriftFlux, U-81
incompressibleFluid, U-18, U-81
incompressibleMultiphaseVoF, U-82
incompressibleVoF, U-40, U-82
isothermalFilm, U-82
isothermalFluid, U-82
movingMesh, U-82
multicomponentFluid, U-81
multiphaseEuler, U-82
multiphaseVoFSolver, U-83
shockFluid, U-81
solidDisplacement, U-53, U-82
solid, U-82
twoPhaseSolver, U-82
twoPhaseVoFSolver, U-82

solver relative tolerance, U-119
solver tolerance, U-118
solvers keyword, U-117
SpalartAllmaras model, U-222, U-223
SpalartAllmarasDDES model, U-224
SpalartAllmarasDES model, U-224
SpalartAllmarasIDDES model, U-224
specie keyword, U-219
specieAdvectiveFlux post-processing, U-200
specieDiffusionFlux post-processing, U-200
specieFlux post-processing, U-200
specieReactionRates post-processing, U-203
sphere keyword, U-163
spline

keyword entry, U-144
splitBaffles utility, U-87
splitCells utility, U-87
splitMeshRegions utility, U-87

square keyword, U-185
squarePulse keyword, U-185
SSG model, U-222, U-223
star3ToFoam utility, U-86
star4ToFoam utility, U-86
startFace keyword, U-139
startFrom keyword, U-27, U-107
starToFoam utility, U-169
startTime

keyword entry, U-27, U-108
startTime keyword, U-27, U-108
staticPressureIncompressible post-processing, U-

203
steadyParticleTracks utility, U-88
steadyState

keyword entry, U-27, U-111
Stereolithography (STL), U-152
stitchMesh utility, U-87
stopAt keyword, U-108
stopAtClockTime post-processing, U-202
stopAtEmptyClouds post-processing, U-202
stopAtFile post-processing, U-202
stopAtTimeStep post-processing, U-202
strategy keyword, U-77
streamFunction post-processing, U-200
streamlinesLine post-processing, U-205
streamlinesPatch post-processing, U-205
streamlinesPoints post-processing, U-205
streamlinesSphere post-processing, U-205
stress analysis of plate with hole, U-52
Style window panel, U-192
subsetMesh utility, U-87
subsetMesh utility, U-168
subtract post-processing, U-201
surface keyword, U-164
surface mesh, U-152
surfaceAdd utility, U-88
surfaceAutoPatch utility, U-88
surfaceBooleanFeatures utility, U-88
surfaceCheck utility, U-88
surfaceClean utility, U-89
surfaceCoarsen utility, U-89
surfaceConvert utility, U-89
surfaceFeatureConvert utility, U-89
surfaceFeatures utility, U-89
surfaceFind utility, U-89
surfaceHookUp utility, U-89
surfaceInertia utility, U-89
surfaceInterpolate post-processing, U-200
surfaceLambdaMuSmooth utility, U-89
surfaceMeshConvert utility, U-89
surfaceMeshExport utility, U-89
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surfaceMeshImport utility, U-89
surfaceMeshInfo utility, U-89
surfaceMeshTriangulate utility, U-89
surfaceOrient utility, U-89
surfacePointMerge utility, U-89
surfaceRedistributePar utility, U-89
surfaceRefineRedGreen utility, U-89
surfaceSplitByTopology utility, U-89
surfaceSplitByPatch utility, U-89
surfaceSplitNonManifolds utility, U-90
surfaceSubset utility, U-90
surfaceToPatch utility, U-90
surfaceTransformPoints utility, U-90
surfaceFeatures utility, U-156
symGaussSeidel

keyword entry, U-120
symmetry

boundary condition, U-140
symmetry

boundary condition, U-141
symmetryPlane

boundary condition, U-140, U-142
system directory, U-91

table keyword, U-185
tableFile keyword, U-185
Tcommon keyword, U-217
temporalInterpolate utility, U-88
tetgenToFoam utility, U-86
text box

Opacity, U-193
thermodynamics keyword, U-219
thermoType keyword, U-213
thickness keyword, U-160
Thigh keyword, U-217
time

control, U-107
time post-processing, U-202
time step, U-46
timeFormat keyword, U-109
timePrecision keyword, U-109
timeScheme keyword, U-110
timeStamp

keyword entry, U-75
timeStampMaster

keyword entry, U-75
timeStep post-processing, U-202
timeStep

keyword entry, U-27, U-108
Tlow keyword, U-217
ToC utility, U-128
tolerance

solver, U-118

solver relative, U-119
tolerance keyword, U-60, U-118, U-159
Toolbars

menu entry, U-193
topoSet utility, U-87
totalEnthalpy post-processing, U-200
totalPressure

boundary condition, U-183
totalPressureCompressible post-processing, U-

203
totalPressureIncompressible post-processing, U-

203
Tr keyword, U-216
tr post-processing, U-200
traction keyword, U-58
transformPoints utility, U-87
transport keyword, U-214, U-219
triSurfaceAverage post-processing, U-204
triSurfaceDifference post-processing, U-204
triSurfaceVolumetricFlowRate post-processing,

U-204
truncatedCone keyword, U-163
Ts keyword, U-215
turbulence

dissipation, U-25
kinetic energy, U-25

turbulence keyword, U-25, U-221, U-223
turbulenceFields post-processing, U-200
turbulenceIntensity post-processing, U-200
turbulent

intensity, U-25
turbulentBL

keyword entry, U-37
tutorials

backward-facing step, U-18
breaking of a dam, U-40
stress analysis of plate with hole, U-52

twoPhaseSolver solver module, U-82
twoPhaseVoFSolver solver module, U-82
type keyword, U-214

uncollated
keyword entry, U-78

uncorrected
keyword entry, U-116

uniform post-processing, U-201
uniformFixedValue

boundary condition, U-184
uniformTable keyword, U-185
uniformValue keyword, U-184, U-185
union keyword, U-165
UnitConversions keyword, U-106
units
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base, U-96
conversion, U-97
dimensional, U-95
of measurement, U-97
SI, U-96
Système International, U-96
United States Customary System, U-96
USCS, U-96

unitSet keyword, U-106
upwind

keyword entry, U-113
upwind differencing, U-47
USCS units, U-96
userTimeStep post-processing, U-202
utility

ToC, U-128
adiabaticFlameT, U-90
ansysToFoam, U-85
applyBoundaryLayer, U-84
autoPatch, U-86
blockMesh, U-142
blockMesh, U-85
boxTurb, U-84
ccm26ToFoam, U-85
cfx4ToFoam, U-169
cfx4ToFoam, U-85
changeDictionary, U-84
checkMesh, U-170
checkMesh, U-86
chemkinToFoam, U-90
collapseEdges, U-87
combinePatchFaces, U-87
createNonConformalCouples, U-141
createNonConformalCouples, U-86
createPatch, U-167
createZones, U-165
createBaffles, U-86
createExternalCoupledPatchGeometry, U-84
createPatch, U-86
createZones, U-86
datToFoam, U-85
decomposePar, U-76, U-78
decomposePar, U-90
deformedGeom, U-86
dsmcInitialise, U-84
engineCompRatio, U-88
engineSwirl, U-84
ensightFoamReader, U-211
equilibriumCO, U-90
equilibriumFlameT, U-90
extrude2DMesh, U-85
extrudeMesh, U-85

extrudeToRegionMesh, U-85
faceAgglomerate, U-84
flattenMesh, U-86
fluent3DMeshToFoam, U-85
fluentMeshToFoam, U-169
fluentMeshToFoam, U-86
foamDictionary, U-123
foamFormatConvert, U-79
foamListTimes, U-37, U-123
foamPostProcess, U-196
foamToC, U-128
foamUnits, U-130
foamVTKSeries, U-210
foamDataToFluent, U-88, U-211
foamDictionary, U-90
foamFormatConvert, U-90
foamListTimes, U-90
foamMeshToFluent, U-86
foamPostProcess, U-88
foamSetupCHT, U-84
foamToC, U-90
foamToEnsightParts, U-88, U-211
foamToEnsight, U-88, U-211
foamToGMV, U-88, U-211
foamToStarMesh, U-86
foamToSurface, U-86
foamToTetDualMesh, U-88, U-211
foamToVTK, U-88, U-211
gambitToFoam, U-169
gambitToFoam, U-86
gmshToFoam, U-86
ideasToFoam, U-169
ideasUnvToFoam, U-86
insideCells, U-87
kivaToFoam, U-86
mapFields, U-175
mapFieldsPar, U-85
mapFields, U-85
mdInitialise, U-85
mergeBaffles, U-87
mergeMeshes, U-87
mirrorMesh, U-87
mixtureAdiabaticFlameT, U-90
mshToFoam, U-86
netgenNeutralToFoam, U-86
noise, U-88
objToVTK, U-87
particleTracks, U-88
patchSummary, U-90
pdfPlot, U-88
plot3dToFoam, U-86
polyDualMesh, U-87
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reorderPatches, U-87
reconstructPar, U-80
reconstructPar, U-90
redistributePar, U-90
refineMesh, U-166
refineMesh, U-87
refineWallLayer, U-87
refinementLevel, U-87
removeFaces, U-87
renumberMesh, U-87
sammToFoam, U-86
scalePoints, U-172
selectCells, U-87
setFields, U-44, U-45
setAtmBoundaryLayer, U-85
setFields, U-85
setWaves, U-85
singleCellMesh, U-87
smapToFoam, U-88, U-211
snappyHexMesh, U-152
snappyHexMeshConfig, U-85
snappyHexMesh, U-85
splitBaffles, U-87
splitCells, U-87
splitMeshRegions, U-87
star3ToFoam, U-86
star4ToFoam, U-86
starToFoam, U-169
steadyParticleTracks, U-88
stitchMesh, U-87
subsetMesh, U-168
subsetMesh, U-87
surfaceFeatures, U-156
surfaceAdd, U-88
surfaceAutoPatch, U-88
surfaceBooleanFeatures, U-88
surfaceCheck, U-88
surfaceClean, U-89
surfaceCoarsen, U-89
surfaceConvert, U-89
surfaceFeatureConvert, U-89
surfaceFeatures, U-89
surfaceFind, U-89
surfaceHookUp, U-89
surfaceInertia, U-89
surfaceLambdaMuSmooth, U-89
surfaceMeshConvert, U-89
surfaceMeshExport, U-89
surfaceMeshImport, U-89
surfaceMeshInfo, U-89
surfaceMeshTriangulate, U-89
surfaceOrient, U-89

surfacePointMerge, U-89
surfaceRedistributePar, U-89
surfaceRefineRedGreen, U-89
surfaceSplitByPatch, U-89
surfaceSplitByTopology, U-89
surfaceSplitNonManifolds, U-90
surfaceSubset, U-90
surfaceToPatch, U-90
surfaceTransformPoints, U-90
temporalInterpolate, U-88
tetgenToFoam, U-86
topoSet, U-87
transformPoints, U-87
viewFactorsGen, U-85
vtkUnstructuredToFoam, U-86
writeMeshObj, U-86
zeroDimensionalMesh, U-85
zipUpMesh, U-87

v2f model, U-223
value keyword, U-24, U-181
valueFraction keyword, U-182
valueMulticomponentMixture

keyword entry, U-215
values keyword, U-44
VCR Controls menu, U-28, U-191
vector class, U-95
version keyword, U-94
vertices keyword, U-21, U-143
veryInhomogeneousMixture keyword, U-215
View menu, U-190, U-193
View (Render View) window panel, U-23
View Settings

menu entry, U-193
viewFactorsGen utility, U-85
viscosity

kinematic, U-24
viscosityModel keyword, U-45
viscosityModel keyword, U-24, U-226
VoFSolver solver module, U-83
volAverage post-processing, U-202
volField post-processing, U-200
volIntegrate post-processing, U-202
vorticity post-processing, U-200
vtk

keyword entry, U-109
vtkUnstructuredToFoam utility, U-86
vtkPVFoam

library, U-189

WALE model, U-224
wall

functions, U-26
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wall
boundary condition, U-43, U-140, U-142

wallBoilingProperties post-processing, U-203
wallBoilingProperty post-processing, U-204
wallHeatFlux post-processing, U-200
wallHeatTransferCoeff post-processing, U-200
wallShearStress post-processing, U-200
wallDist keyword, U-110
wclean script, U-70
wedge

boundary condition, U-140, U-151
window

Options, U-193
Pipeline Browser, U-22, U-190
Properties, U-191, U-192
Render View, U-193
Seed, U-194

window panel
Camera, U-193
Color Arrays, U-193
Color Legend, U-192
Color Palette, U-193
Color Scale, U-192
Display, U-22, U-190, U-192
General, U-193
Information, U-190
Mesh Parts, U-22
Parameters, U-191
Properties, U-190
Render View, U-193
Style, U-192
View (Render View), U-23

Wireframe
menu entry, U-192

WM_ARCH
environment variable, U-69

WM_ARCH_OPTION
environment variable, U-69

WM_CC
environment variable, U-69

WM_CFLAGS
environment variable, U-69

WM_COMPILE_OPTION
environment variable, U-70

WM_COMPILER
environment variable, U-70

WM_COMPILER_LIB_ARCH
environment variable, U-70

WM_COMPILER_TYPE
environment variable, U-70

WM_CXX
environment variable, U-69

WM_CXXFLAGS
environment variable, U-69

WM_DIR
environment variable, U-69

WM_LABEL_OPTION
environment variable, U-69

WM_LABEL_SIZE
environment variable, U-69

WM_LDFLAGS
environment variable, U-70

WM_LINK_LANGUAGE
environment variable, U-69, U-70

WM_MPLIB
environment variable, U-69

WM_OPTIONS
environment variable, U-69

WM_OSTYPE
environment variable, U-70

WM_PRECISION_OPTION
environment variable, U-69

WM_PROJECT
environment variable, U-69

WM_PROJECT_DIR
environment variable, U-69

WM_PROJECT_INST_DIR
environment variable, U-69

WM_PROJECT_USER_DIR
environment variable, U-69

WM_PROJECT_VERSION
environment variable, U-69

WM_THIRD_PARTY_DIR
environment variable, U-69

wmake script, U-65
write keyword, U-165
writeCellCentres post-processing, U-200
writeCellVolumes post-processing, U-200
writeMeshObj utility, U-86
writeObjects post-processing, U-202
writeVTK post-processing, U-200
writeCompression keyword, U-109
writeControl keyword, U-27, U-47, U-108
writeFormat keyword, U-108
writeInterval keyword, U-27, U-108
writeNow

keyword entry, U-108
writePrecision keyword, U-108

XiFluid solver module, U-81
XiReactionRate post-processing, U-203

yPlus post-processing, U-200

zero keyword, U-185
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zeroDimensionalMesh utility, U-85
zeroGradient

boundary condition, U-181
zipUpMesh utility, U-87

zone

of a mesh, U-162

zones keyword, U-44
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