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License
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CRE-
ATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THEWORK IS PROTECTED
BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER
THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LI-
CENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE
RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
TERMS AND CONDITIONS.

1. Definitions
a. “Adaptation” means a work based upon the Work, or upon the Work and other pre-existing

works, such as a translation, adaptation, derivative work, arrangement of music or other
alterations of a literary or artistic work, or phonogram or performance and includes cine-
matographic adaptations or any other form in which the Work may be recast, transformed,
or adapted including in any form recognizably derived from the original, except that a work
that constitutes a Collection will not be considered an Adaptation for the purpose of this
License. For the avoidance of doubt, where the Work is a musical work, performance or
phonogram, the synchronization of the Work in timed-relation with a moving image (“synch-
ing”) will be considered an Adaptation for the purpose of this License.

b. “Collection” means a collection of literary or artistic works, such as encyclopedias and an-
thologies, or performances, phonograms or broadcasts, or other works or subject matter other
than works listed in Section 1(f) below, which, by reason of the selection and arrangement of
their contents, constitute intellectual creations, in which the Work is included in its entirety
in unmodified form along with one or more other contributions, each constituting separate
and independent works in themselves, which together are assembled into a collective whole.
A work that constitutes a Collection will not be considered an Adaptation (as defined above)
for the purposes of this License.

c. “Distribute” means to make available to the public the original and copies of the Work
through sale or other transfer of ownership.

d. “Licensor” means the individual, individuals, entity or entities that offer(s) the Work under
the terms of this License.

e. “Original Author” means, in the case of a literary or artistic work, the individual, individuals,
entity or entities who created the Work or if no individual or entity can be identified, the
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publisher; and in addition (i) in the case of a performance the actors, singers, musicians,
dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise
perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram the
producer being the person or legal entity who first fixes the sounds of a performance or other
sounds; and, (iii) in the case of broadcasts, the organization that transmits the broadcast.

f. “Work” means the literary and/or artistic work offered under the terms of this License includ-
ing without limitation any production in the literary, scientific and artistic domain, whatever
may be the mode or form of its expression including digital form, such as a book, pamphlet
and other writing; a lecture, address, sermon or other work of the same nature; a dramatic
or dramatico-musical work; a choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are assimilated works
expressed by a process analogous to cinematography; a work of drawing, painting, archi-
tecture, sculpture, engraving or lithography; a photographic work to which are assimilated
works expressed by a process analogous to photography; a work of applied art; an illustration,
map, plan, sketch or three-dimensional work relative to geography, topography, architecture
or science; a performance; a broadcast; a phonogram; a compilation of data to the extent it
is protected as a copyrightable work; or a work performed by a variety or circus performer
to the extent it is not otherwise considered a literary or artistic work.

g. “You” means an individual or entity exercising rights under this License who has not pre-
viously violated the terms of this License with respect to the Work, or who has received
express permission from the Licensor to exercise rights under this License despite a previous
violation.

h. “Publicly Perform” means to perform public recitations of the Work and to communicate to
the public those public recitations, by any means or process, including by wire or wireless
means or public digital performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a place individually chosen
by them; to perform the Work to the public by any means or process and the communication
to the public of the performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs, sounds or images.

i. “Reproduce” means to make copies of the Work by any means including without limitation
by sound or visual recordings and the right of fixation and reproducing fixations of the Work,
including storage of a protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights.
Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or
rights arising from limitations or exceptions that are provided for in connection with the copyright
protection under copyright law or other applicable laws.

3. License Grant.
Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-
free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the
rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Re-
produce the Work as incorporated in the Collections;
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b. and, to Distribute and Publicly Perform the Work including as incorporated in Collections.

The above rights may be exercised in all media and formats whether now known or hereafter
devised. The above rights include the right to make such modifications as are technically necessary
to exercise the rights in other media and formats, but otherwise you have no rights to make
Adaptations. Subject to 8(f), all rights not expressly granted by Licensor are hereby reserved,
including but not limited to the rights set forth in Section 4(d).

4. Restrictions.
The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You
must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of the recipient of the Work
to exercise the rights granted to that recipient under the terms of the License. You may not
sublicense the Work. You must keep intact all notices that refer to this License and to the
disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform.
When You Distribute or Publicly Perform the Work, You may not impose any effective
technological measures on the Work that restrict the ability of a recipient of the Work from
You to exercise the rights granted to that recipient under the terms of the License. This
Section 4(a) applies to the Work as incorporated in a Collection, but this does not require
the Collection apart from the Work itself to be made subject to the terms of this License. If
You create a Collection, upon notice from any Licensor You must, to the extent practicable,
remove from the Collection any credit as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner
that is primarily intended for or directed toward commercial advantage or private monetary
compensation. The exchange of the Work for other copyrighted works by means of digital file-
sharing or otherwise shall not be considered to be intended for or directed toward commercial
advantage or private monetary compensation, provided there is no payment of any monetary
compensation in connection with the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request
has been made pursuant to Section 4(a), keep intact all copyright notices for the Work
and provide, reasonable to the medium or means You are utilizing: (i) the name of the
Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author
and/or Licensor designate another party or parties (e.g., a sponsor institute, publishing
entity, journal) for attribution (“Attribution Parties”) in Licensor’s copyright notice, terms
of service or by other reasonable means, the name of such party or parties; (ii) the title of
the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not refer to the copyright
notice or licensing information for the Work. The credit required by this Section 4(c) may be
implemented in any reasonable manner; provided, however, that in the case of a Collection,
at a minimum such credit will appear, if a credit for all contributing authors of Collection
appears, then as part of these credits and in a manner at least as prominent as the credits
for the other contributing authors. For the avoidance of doubt, You may only use the credit
required by this Section for the purpose of attribution in the manner set out above and, by
exercising Your rights under this License, You may not implicitly or explicitly assert or imply
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any connection with, sponsorship or endorsement by the Original Author, Licensor and/or
Attribution Parties, as appropriate, of You or Your use of the Work, without the separate,
express prior written permission of the Original Author, Licensor and/or Attribution Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme cannot
be waived, the Licensor reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right
to collect royalties through any statutory or compulsory licensing scheme can be waived,
the Licensor reserves the exclusive right to collect such royalties for any exercise by You
of the rights granted under this License if Your exercise of such rights is for a purpose
or use which is otherwise than noncommercial as permitted under Section 4(b) and
otherwise waives the right to collect royalties through any statutory or compulsory
licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a purpose or use which is
otherwise than noncommercial as permitted under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by
applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or
as part of any Collections, You must not distort, mutilate, modify or take other derogatory
action in relation to the Work which would be prejudicial to the Original Author’s honor or
reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHER-
WISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE
OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
TO YOU.

6. Limitation on Liability.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LI-
CENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDEN-
TAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS
LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.
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7. Termination
a. This License and the rights granted hereunder will terminate automatically upon any breach

by You of the terms of this License. Individuals or entities who have received Collections
from You under this License, however, will not have their licenses terminated provided such
individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7,
and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the
duration of the applicable copyright in the Work). Notwithstanding the above, Licensor
reserves the right to release the Work under different license terms or to stop distributing
the Work at any time; provided, however that any such election will not serve to withdraw
this License (or any other license that has been, or is required to be, granted under the terms
of this License), and this License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous
a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers

to the recipient a license to the Work on the same terms and conditions as the license granted
to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this License, and
without further action by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to
unless such waiver or consent shall be in writing and signed by the party to be charged with
such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You.

e. This License may not be modified without the mutual written agreement of the Licensor
and You. The rights granted under, and the subject matter referenced, in this License were
drafted utilizing the terminology of the Berne Convention for the Protection of Literary
and Artistic Works (as amended on September 28, 1979), the Rome Convention of 1961,
the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of
1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights
and subject matter take effect in the relevant jurisdiction in which the License terms are
sought to be enforced according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the standard suite of rights granted
under applicable copyright law includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this License is not intended to
restrict the license of any rights under applicable law.
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Trademarks

ANSYS is a registered trademark of ANSYS Inc.
CFX is a registered trademark of Ansys Inc.
CHEMKIN is a registered trademark of Reaction Design Corporation.
EnSight is a registered trademark of Computational Engineering International Ltd.
Fieldview is a registered trademark of Intelligent Light.
Fluent is a registered trademark of Ansys Inc.
GAMBIT is a registered trademark of Ansys Inc.
Icem-CFD is a registered trademark of Ansys Inc.
I-DEAS is a registered trademark of Structural Dynamics Research Corporation.
Linux is a registered trademark of Linus Torvalds.
OpenFOAM is a registered trademark of ESI Group.
ParaView is a registered trademark of Kitware.
STAR-CD is a registered trademark of CD-Adapco.
UNIX is a registered trademark of The Open Group.
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Chapter 1

Introduction

This guide accompanies the release of version 13 of the Open Source Field Operation and
Manipulation (OpenFOAM) C++ libraries. It provides a description of the basic operation
of OpenFOAM, first through a set of tutorial exercises in chapter 2 and later by more detailed
descriptions of different components of OpenFOAM.

OpenFOAM is software for computational fluid dynamics (CFD). It includes a collection
of applications which perform a range of tasks in CFD. The applications use packaged func-
tionality contained within over 150 libraries. As well as performing calculations of the fluid
dynamics, there are applications which configure and initialise simulations, manipulate case
geometry, generate computational meshes, and process and visualise results.

Applications primarily fall into two categories: solvers, which perform the calculations in
fluid (or other continuum) mechanics; and utilities, that perform the other tasks described
above. Prior to version 11 of OpenFOAM, individual solvers were written for numerous
specific types of flow. With so many combinations of flow type and additional physics,
OpenFOAM included almost 100 solvers at one time. Solvers with names like simpleFoam
and pimpleFoam have been the mainstay of OpenFOAM since the early 1990s.

The previous version (11) of OpenFOAM, however, introduced modular solvers as a major
improvement to the original application solvers. The application solvers are replaced by a
single foamRun solver which describes the steps of a general algorithm for fluid dynamics
calculations. foamRun loads a solver module, which defines each step to characterise a
particular type of flow.

Modular solvers are simpler to use and maintain than application solvers. Their source
code is easier to navigate, promoting better understanding. They are more flexible; in
particular, there is also a foamMultiRun solver which can take two or more domain regions
and apply a different solver module to each region. In particular, modules for one or more
fluids and solids can be coupled for conjugate heat transfer (CHT) for different flow types,
e.g. multiphase.

Further details of applications, including modular solvers, are described in chapter 3.
General configuration and running of OpenFOAM cases are described in chapter 4. Chap-
ter 5 covers details of the generation of meshes using the mesh generator supplied with Open-
FOAM and conversion of mesh data generated by third-party products. Post-processing of
results, including visualisation, is in chapter 7. Finally, some aspects of physical modelling,
e.g. transport and thermophysical modelling, are described in chapter 8.
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Chapter 2

Tutorials

This chapter we describes the process of setup, simulation and post-processing for some
OpenFOAM test cases, with the principal aim of introducing a user to the basic procedures
of running OpenFOAM. The test cases are taken from the tutorials directory which con-
tains numerous example cases in OpenFOAM. The directory location is represented by the
$FOAM_TUTORIALS variable in the OpenFOAM “environment”.

The directory contains numerous cases that demonstrate the use of all the solver modules,
other solvers and many utilities supplied with OpenFOAM. Most examples are stored in sub-
directories corresponding to each of the modular solvers. For example, the cases that use the
incompressibleFluid module are stored in $FOAM_TUTORIALS/incompressibleFluid. The user
can explore these example cases, starting by listing the top-level of the $FOAM_TUTORIALS
directory, by typing in a terminal

ls $FOAM_TUTORIALS

The OpenFOAM environment includes a $FOAM_RUN variable which represents a di-
rectory in the user’s file system at $HOME/OpenFOAM/<USER>-13/run where <USER> is
the account login name and “13” is the OpenFOAM version number. The directory provides
a recommended location to store and run simulation cases. The examples presented in this
chapter will be copied into the run directory. The user should check whether the directory
exists by typing

ls $FOAM_RUN

If a message is returned saying no such directory exists, the user should create the directory
by typing

mkdir -p $FOAM_RUN

Any example case from $FOAM_TUTORIALS can then be copied into the run directory.
For example to try the motorBike example for the incompressibleFluid solver module, the user
can copy it to the run directory by typing:

cd $FOAM_RUN
cp -r $FOAM_TUTORIALS/incompressibleFluid/motorBike .
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2.1 Backward-facing step
This tutorial will describe how to pre-process, run and post-process a case involving isother-
mal, incompressible flow across a backward-facing step. The problem is treated as two
dimensional with the geometry shown in Figure 2.1. The domain consists of:

• an inlet opening (left);

• an outlet opening (right);

• an upper wall, which is horizontal before tapering gently toward the outlet;

• a lower wall, which also tapers towards the outlet, but includes an abrupt step within
a short distance from the inlet;

25.4

25.4
33.2

20.6 206 84
dimensions in mm

inlet outletupper wall

lower wall

x
y

Figure 2.1: Geometry of the backward-facing step.

Flow enters the inlet in the x-direction with a speed of 10 m/s. The flow will be assumed
isothermal and incompressible and will be solved using the incompressibleFluidmodular solver.

2.1.1 Pre-processing
Cases are configured in OpenFOAM by editing input data files. Users should select a suit-
able file editor to do this, e.g. emacs, vi, gedit, nedit, etc. A case involves multiple data
files, corresponding to different parts of the configuration, e.g. mesh, fields, properties, con-
trol parameters, etc. As described in section 4.1, the set of files is stored within a case
directory, which is given a suitably descriptive name. This tutorial uses the case $FOAM_-
TUTORIALS/incompressibleFluid/pitzDailySteady, which the user should copy to their run
directory as follows.

cd $FOAM_RUN
cp -r $FOAM_TUTORIALS/incompressibleFluid/pitzDailySteady .
cd pitzDailySteady
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Figure 2.2: Block structure of the mesh for the backward step.

2.1.2 Mesh generation
OpenFOAM always operates in a three dimensional Cartesian coordinate system and all
geometries are generated in three dimensions (3D). It solves the case in two dimensions
(2D) by specifying a special empty boundary condition on boundaries normal to the (3rd)
dimension (for which no solution is required).

OpenFOAM includes a simple mesh generator, blockMesh, which generates meshes from
a blockMeshDict file, located in the system directory for a given case. The domain is defined
using blocks whose vertex locations are specified in the file. The structure of the blocks and
respective vertices are shown in Figure 2.2.

The backwardStep domain consists of five blocks shown in the figure. The domain depth
in the z direction (exaggerated in the figure) is 1 mm. The blockMeshDict file for this example
is reproduced below:

1 /*--------------------------------*- C++ -*----------------------------------*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration | Website: https://openfoam.org
5 \\ / A nd | Version: 13
6 \\/ M anipulation |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10 format ascii;
11 class dictionary;
12 object blockMeshDict;
13 }
14 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
15
16 // Note: this file is a Copy of $FOAM_TUTORIALS/resources/blockMesh/pitzDaily
17
18 convertToMeters 0.001;
19
20 vertices
21 (
22 (-20.6 0 -0.5)
23 (-20.6 25.4 -0.5)
24 (0 -25.4 -0.5)
25 (0 0 -0.5)
26 (0 25.4 -0.5)
27 (206 -25.4 -0.5)
28 (206 0 -0.5)
29 (206 25.4 -0.5)
30 (290 -16.6 -0.5)
31 (290 0 -0.5)
32 (290 16.6 -0.5)
33
34 (-20.6 0 0.5)
35 (-20.6 25.4 0.5)
36 (0 -25.4 0.5)
37 (0 0 0.5)
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38 (0 25.4 0.5)
39 (206 -25.4 0.5)
40 (206 0 0.5)
41 (206 25.4 0.5)
42 (290 -16.6 0.5)
43 (290 0 0.5)
44 (290 16.6 0.5)
45 );
46
47 negY
48 (
49 (2 4 1)
50 (1 3 0.3)
51 );
52
53 posY
54 (
55 (1 4 2)
56 (2 3 4)
57 (2 4 0.25)
58 );
59
60 posYR
61 (
62 (2 1 1)
63 (1 1 0.25)
64 );
65
66
67 blocks
68 (
69 hex (0 3 4 1 11 14 15 12)
70 (18 30 1)
71 simpleGrading (0.5 $posY 1)
72
73 hex (2 5 6 3 13 16 17 14)
74 (180 27 1)
75 edgeGrading (4 4 4 4 $negY 1 1 $negY 1 1 1 1)
76
77 hex (3 6 7 4 14 17 18 15)
78 (180 30 1)
79 edgeGrading (4 4 4 4 $posY $posYR $posYR $posY 1 1 1 1)
80
81 hex (5 8 9 6 16 19 20 17)
82 (25 27 1)
83 simpleGrading (2.5 1 1)
84
85 hex (6 9 10 7 17 20 21 18)
86 (25 30 1)
87 simpleGrading (2.5 $posYR 1)
88 );
89
90 boundary
91 (
92 inlet
93 {
94 type patch;
95 faces
96 (
97 (0 1 12 11)
98 );
99 }

100 outlet
101 {
102 type patch;
103 faces
104 (
105 (8 9 20 19)
106 (9 10 21 20)
107 );
108 }
109 upperWall
110 {
111 type wall;
112 faces
113 (
114 (1 4 15 12)
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115 (4 7 18 15)
116 (7 10 21 18)
117 );
118 }
119 lowerWall
120 {
121 type wall;
122 faces
123 (
124 (0 3 14 11)
125 (3 2 13 14)
126 (2 5 16 13)
127 (5 8 19 16)
128 );
129 }
130 frontAndBack
131 {
132 type empty;
133 faces
134 (
135 (0 3 4 1)
136 (2 5 6 3)
137 (3 6 7 4)
138 (5 8 9 6)
139 (6 9 10 7)
140 (11 14 15 12)
141 (13 16 17 14)
142 (14 17 18 15)
143 (16 19 20 17)
144 (17 20 21 18)
145 );
146 }
147 );
148
149 // ************************************************************************* //

The file first contains header information in the form of a banner (lines 1-7), then file
information contained in a FoamFile sub-dictionary, delimited by curly braces ({...}).

For the remainder of the manual:

To save space, file headers, including the banner and FoamFile sub-dictionary, will
be removed from further verbatim quoting of case files.

The body of the blockMeshDict file will be briefly reviewed here, but for further details
see section 5.4. The file begins with the coordinates of the block vertices. All vertices are
scaled by the factor specified by convertToMeters. The file then defines the blocks (here, 5
of them). Each block is a hexahedral shape, given by the hex entry. The eight vertex labels
are listed following the hex entry.

The number of cells is specified in each direction for each block by a vector of three
integers. For example the first block specifies (18 30 1), which produces 18 cells through
the block in the x-direction, 30 in the x-direction and 1 in the z-direction (the unused
direction).

The blocks includes mesh grading, which enables the cell lengths to vary across the block.
It is includes multi-grading which is described in section 5.4.5 using parameters negY, posY
and posYR.

Finally, the mesh splits the boundary into inlet, outlet and wall regions, included in the
following patches: upperWall and lowerWall for the wall boundaries of the domain; inlet
and outlet for the open boundaries. The boundary in the z-normal direction is included in
a single patch named frontAndBack.

The mesh is generated by running blockMesh on this blockMeshDict file. From within the
case directory, this is done, simply by typing in the terminal:
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blockMesh

The running status of blockMesh is reported in the terminal window. Any mistakes in the
blockMeshDict file are picked up by blockMesh and the resulting error message directs the
user to the source of the error.

2.1.3 Viewing the mesh
It is sensible to verify the mesh is generated correctly before running the simulation. The
mesh can be viewed in ParaView, the post-processing tool supplied with OpenFOAM. The
ParaView post-processing is conveniently launched on OpenFOAM case data by executing
the paraFoam script from within the case directory.

Any UNIX/Linux executable (application, script, etc.) can be run in two ways: as a
foreground process, i.e. one in which the shell waits until the executable has finished before
returning the command prompt; or, as a background process, which allows the shell to accept
additional commands while the executable is still running. Since it is convenient to keep
ParaView open while running other commands from the terminal, we will launch it in the
background using the & operator by typing

paraFoam &

This launches the ParaView window as shown in Figure 7.1. In the Pipeline Browser,
ParaView registers pitzDailySteady.OpenFOAM, representing the pitzDailySteady case.

For the remainder of the manual:

The first time ParaView is launched, users are faced with a splash screen which can
be permanently deactivated by clicking the relevant checkbox before closing.

Before clicking the Apply button, the user can select some geometry from the Mesh
Parts panel in the Properties window (may require scrolling to find). Because the case is
small, it is easiest to select all the data by checking the box adjacent to the Mesh Parts panel
title, which automatically checks all individual components within the respective panel. The
user should then click the Apply button to load the geometry into ParaView.

The user can control the visual representation of the selected module either using the
second row of controls at the top of ParaView or by scrolling down further to the Display
panel that. The user should make the selections using the second row of controls as shown
in Figure 2.3, or as described below from within the Display panel.

1. select Wireframe from the Representation menu;

2. in the Coloring section, select Solid Color;

3. click Edit (in Coloring) and select an appropriate colour e.g. black (for a white back-
ground).
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Select WireframeSelect Solid ColorSelect Color

Figure 2.3: Viewing the mesh in ParaView (cell density reduced).

Especially the first time the user starts ParaView, it is recommended that they manipulate
the view as described in section 7.1.5. In particular, since this is a 2D case, it is recommended
that Camera Parallel Projection is selected at the bottom of the View (Render View) panel.
The selection can be saved as a user default by clicking the Save current view settings button
to the right of the View (Render View) heading (the furthest right of the four buttons). The
background colour can be also set in the View (Render View) panel at the bottom of the
Properties window.

Note that, many parameters in the Properties window are only visible by clicking
the Advanced Properties gearwheel button ( ) at the top of the Properties window, next
to the search box.

2.1.4 Boundary and initial conditions
Once the mesh generation is complete, the user can look at the configuration of the initial
fields for this case. The case starts at time t = 0 s, so the initial field data is stored in a 0
sub-directory of the cavity directory. The 0 sub-directory contains several files including p
and U, which represent the pressure (p) and velocity (U) fields, respectively. Within these
files the initial values and boundary conditions must be set. Let us examine the p file below.

16 dimensions [0 2 -2 0 0 0 0];
17
18 internalField uniform 0;
19
20 boundaryField
21 {
22 inlet
23 {
24 type zeroGradient;
25 }
26
27 outlet
28 {
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29 type fixedValue;
30 value uniform 0;
31 }
32
33 upperWall
34 {
35 type zeroGradient;
36 }
37
38 lowerWall
39 {
40 type zeroGradient;
41 }
42
43 frontAndBack
44 {
45 type empty;
46 }
47 }
48
49 // ************************************************************************* //

There are three principal entries in field data files:

dimensions specifies the dimensions of the field, here kinematic pressure, i.e. m2 s−2 (see
section 4.2.6 for more information);

internalField the internal field data which can be uniform, described by a single value; or
nonuniform, where the values of the field must be specified for all cells (see section 4.2.9
for more information);

boundaryField the boundary field data that includes boundary conditions and data for all
the boundary patches (see section 4.2.9 for more information).

For this pitzDailySteady case, the initial fields are set to be uniform. Here the pressure is
kinematic, and since the solution does not involve energy and thermodynamics, its absolute
value is not relevant, so is set to uniform 0 for convenience.

The boundary includes the upperWall, lowerWall, inlet and outlet patches. The
walls and inlet are both assigned the zeroGradient boundary condition for p, meaning “the
normal gradient of pressure is zero”. The outlet uses the fixedValue boundary condition for
p with value of uniform 0. The frontAndBack patch, describing the front and back planes
of the 2D case, is specified as empty.

The user can similarly examine the velocity field in the 0/U file. The dimensions are
those expected for velocity, the internal field is initialised as uniform zero, which in the case of
velocity must be expressed by 3 vector components, i.e. uniform (0 0 0) (see section 4.2.5
for more information).

A no-slip condition is assumed on the walls, specified by a noSlip condition. The inlet
flow speed is 10 m/s in the x-direction so represented by a fixedValue condition with value
of uniform (10 0 0). The outlet reverts to the zeroGradient condition. The frontAndBack
patch must be set to empty.

2.1.5 Physical properties
Physical properties and model configurations for the case are stored in dictionary files in the
constant directory. Properties for this example are specified in the following physicalProperties
file.
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16
17 viscosityModel constant;
18
19 nu 1e-05;
20
21 // ************************************************************************* //

First it includes the viscosityModel entry which is set to constant. With that model, a
single kinematic viscosity is then specified by the keyword nu, representing the Greek symbol
ν phonetically for the kinematic viscosity. The value is set to ν = 1× 10−5 m2 s−1.

2.1.6 Momentum transport
An estimate of the Reynolds number is required to determine whether the flow is expected
to be turbulent. The Reynolds number is defined as:

Re = |U|L
ν

(2.1)

where |U| and L are the characteristic speed and length respectively and ν is the kinematic
viscosity. Using the inlet (or step) height L = 25.4 mm and |U| = 10 m/s, Re = 25400. For
flow in a pipe, transition typically occurs when Re ≈> 2000, so this case can be assumed to
be turbulent.

The momentumTransport file characterises the viscous stress in the fluid by a variety of
models, e.g. Newtonian and non-Newtonian fluids, turbulence, visco-elasticity and more. For
this example, the file includes the configuration of turbulence modelling as shown below.

16
17 simulationType RAS;
18
19 RAS
20 {
21 // Tested with kEpsilon, realizableKE, kOmega, kOmega2006, kOmegaSST, v2f,
22 // ShihQuadraticKE, LienCubicKE.
23 model kEpsilon;
24
25 turbulence on;
26
27
28 viscosityModel Newtonian;
29 }
30
31
32 // ************************************************************************* //

The type of simulation is first specified by the simulationType keyword. The RAS entry
indicates a Reynolds-averaged simulation, the standard form of turbulence modelling. The
RAS sub-dictionary includes the model entry which is set to the well-known k–ε model by
the kEpsilon entry. The turbulence keyword provides a switch to turn the modelling on
and off. The model coefficients have default values which can be overridden with additional
entries in the momentumTransport file. When the printCoeffs switch in on, the coefficients
are printed to the terminal when the case is run. The viscosityModel entry confirms the
fluid is modelled as Newtonian (which is the default model, so the entry could be omitted).

The k–ε model solves transport equations for: k, the turbulent kinetic energy; and, ε, the
turbulent dissipation rate. The initial and boundary conditions for those fields are configured
in the 0/k and 0/epsilon files, respectively.
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In particular, the turbulent fields must be initialised with suitable internal and inlet
values. Turbulent kinetic energy k can be calculated by

k = 3
2 (|U|I)2 (2.2)

from an estimate of turbulent intensity I = U′
RMS/|U|, the ratio of the root-mean-square

(RMS) of turbulent fluctuations U′
RMS to the mean flow speed |U|. This example uses an

estimate I = 5%, such that k = 1.5 × (10 × 0.05)2 = 0.375 m2 s−2. In the 0/k file, 0.375 is
used both for the initial internalField and the inlet value.

The turbulent dissipation rate ε can be calculated by

ε = C0.75
µ

k1.5

lm
. (2.3)

from Cµ = 0.09 and an estimate of Prandtl mixing length lm. This example uses an estimate
lm = 10%× step height = 2.54 mm, such that ε = 0.090.75×0.3751.5/0.00254 = 14.855 m2s−3.
In the 0/epsilon file, 14.855 is used both for the initial internalField and the inlet value.

The turbulence model is deployed with wall functions to model the behaviour at wall
boundaries. Wall functions are applied as boundary conditions on the individual wall patches
which enables different wall function models to be applied to different wall regions. The
choice of wall function models are specified through the turbulent viscosity field, νt in the
0/nut file.

16
17 dimensions [0 2 -1 0 0 0 0];
18
19 internalField uniform 0;
20
21 boundaryField
22 {
23 inlet
24 {
25 type calculated;
26 value uniform 0;
27 }
28 outlet
29 {
30 type calculated;
31 value uniform 0;
32 }
33 upperWall
34 {
35 type nutkWallFunction;
36 value uniform 0;
37 }
38 lowerWall
39 {
40 type nutkWallFunction;
41 value uniform 0;
42 }
43 frontAndBack
44 {
45 type empty;
46 }
47 }
48
49
50 // ************************************************************************* //

This case uses standard wall functions, specified by the nutkWallFunction type on the
upperWall and lowerWall patches. Alternative wall function models include the rough wall
functions, specified through the nutRoughWallFunction keyword.
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When wall functions are specified through boundary conditions in the 0/nut file, corre-
sponding conditions must be applied to the wall patches for the turbulence fields. The 0/eps
and 0/k files show that ε is assigned the epsilonWallFunction condition and k is assigned the
kqRWallFunction condition at the wall patches. The latter is a generic boundary condition
that can be applied to any field that are of a turbulent kinetic energy type, e.g. k, q or
Reynolds Stress R.

2.1.7 Control
Input data relating to the control of time and reading and writing of the solution data are
read in from the controlDict file. The user should view this file; as a case control file, it is
located in the system directory.

16
17 solver incompressibleFluid;
18
19 startFrom startTime;
20
21 startTime 0;
22
23 stopAt endTime;
24
25 endTime 2000;
26
27 deltaT 1;
28
29 writeControl timeStep;
30
31 writeInterval 100;
32
33 purgeWrite 0;
34
35 writeFormat ascii;
36
37 writePrecision 6;
38
39 writeCompression off;
40
41 timeFormat general;
42
43 timePrecision 6;
44
45 runTimeModifiable true;
46
47 // ************************************************************************* //

The file first includes a solver entry which describes the solver module used for the simu-
lation. This example uses the incompressibleFluid module for steady or transient turbulent
flow of incompressible isothermal fluids with optional mesh motion and change.

The start/stop times and the time step for the run must be set. OpenFOAM provides
flexible options for time controls which are described in section 4.4. Like most cases, this
example starts the simulation at time t = 0 which instructs the solver to read its field data
from a directory named 0. Therefore we set the startFrom keyword to startTime and then
specify the startTime keyword to be 0.

The aim of the simulation is to reach the steady solution where the recirculation region
is fully developed adjacent to the step. The incompressibleFluid module can run as a steady-
state solver by setting the time derivatives ∂/∂t to zero in all the equations. This is achieved
by setting the ddtSchemes to steadyState in the fvSchemes file, discussed later.

In this mode, the time step, represented by the keyword deltaT, is only used as a time
increment (since it is no longer used to discretise ∂/∂t). Its value does not affect the solution,
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so for steady solutions it is set to 1 so that time simply represents the number of solution
steps.

The endTime keyword sets a time at which the solver application stops running. The
value of 2000 provides an adequate number of solution steps to enable the steady solution
to converge to a reasonable level of accuracy.

As the simulation progresses we wish to write results at intervals of time of interest
for visualisation and other post-processing. The writeControl keyword presents several
options for setting the time at which the results are written; here the timeStep option
specifies that results are written every nth time step where the value n is specified under the
writeInterval keyword. The interval of 100 means results are written at 100, 200, etc.

OpenFOAM creates a new directory named after the current time, e.g. 100, on each
occasion that it writes a set of data, as discussed in full in section 4.1. It writes out the
results for each solution field, e.g. U, p, k, into the time directories.

2.1.8 Discretisation and linear-solver settings
The user specifies the choice of finite volume discretisation schemes in the fvSchemes file
in the system directory. The specification of the linear equation solvers and tolerances and
other algorithm controls is made in the fvSolution file, also in the system directory.

The details of those two files are described in sections 4.5 and 4.6, respectively. For this
example, the following points are important:

• the ddtSchemes defaults to steadyState in fvSchemes, to invoke a steady-state calcu-
lation;

• steady-state solution uses an algorithm based on SIMPLE whose controls are configured
in a SIMPLE sub-dictionary in the fvSolution file;

• the SIMPLE sub-dictionary contains the consistent switch which is set to yes, applying
the “consistent” form of the SIMPLE algorithm (SIMPLEC);

• the convergence of SIMPLEC is very sensitive to the relaxationFactors in the fvSo-
lution file; the values of 0.9 are carefully tuned and are not suitable for the standard
SIMPLE algorithm;

• SIMPLEC’s sensitive convergence generally makes it only reliable for cases with simple
geometries.

2.1.9 Running an application
To run a simulation with a single domain region, the foamRun application is run. It loads
the relevant solver module, from the solver entry in the controlDict file, to perform the
calculation. On this occasion, we will run foamRun in the terminal foreground by typing the
following from within the case directory.

foamRun
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The progress of the simulation is reported in the terminal window. It describes successive
solutions steps, giving the initial and final residuals for each equation, and conservation
errors.

The SIMPLE algorithm controls in fvSolution include a residualControl sub-dictionary
with a set of tolerances for p, U and turbulence fields. The incompressibleFluid solver termi-
nates When the initial residuals for all fields fall below their respective tolerances. In this
example, the solver terminates at 285 iterations with the following statement.

SIMPLE solution converged in 285 iterations

Results from the simulation are written into time directories within the pitzDailySteady case
directory. The user can list the directory contents with the “ls” command to see the time
directories (100, 200 and 285) containing the results.

2.1.10 Time selection in ParaView
Once the results are written to time directories, they can be viewed using ParaView. The
first step is to activate the time selector, including the Time text box on right hand side of
the top row of buttons, as shown in Figure 7.4.

If ParaView is opened before there are any solution time directories (i.e. only a 0 direc-
tory), the time selector must later be re-activated to recognise the solution time directories
by:

• selecting the top of the Properties window (scroll up the panel if necessary) in ParaView;

• toggling the Cache Mesh button at the top of the panel (under the Refresh Times button;

• clicking the Apply button.

The time selector is then updated with Time becoming a drop down menu with the time
directories from the case (0, 100, 200 and 285). In order to view the solution at 285, the
user can use the VCR Controls or Current Time Controls to change the current time to
285.

For the remainder of the manual:

In ParaView, if the window panels, e.g. Properties, do not contain the expected en-
tries, ensure that the relevant module is highlighted in blue in the Pipeline Browser.
For example, Refresh Times only appears when the top module (here, pitzDaily-
Steady.OpenFOAM) is selected.

2.1.11 Colouring surfaces
To view pressure, the user can either make selections from the second row of buttons at the
top of ParaView as shown in Figure 2.4 or scroll down to the Display panel in Properties and
make the following selections:

1. select Surface from the Representation menu;

OpenFOAM-13



U-32 Tutorials

Select SurfaceSelect p (interp.)Select Rescale

Figure 2.4: Displaying pressure contours for the backward step case.

2. select in Coloring

3. click the Rescale button to set the colour scale to the data range, if necessary.

The pressure field should appear as shown above, with the pressure increasing to a maximum
at the contraction of the channel towards the outlet. With the point icon ( ), the pressure
field is interpolated across each cell to give a continuous appearance. Instead if the user
selects the cell icon, ( ), from the Coloring menu, a single value for pressure will be
attributed to each cell, represented by a single colour with no grading.

A colour legend is included which can be disabled by clicking the Toggle Color Legend
Visibility button at the left of the second row of buttons at the top of ParaView. These
buttons are part of the Active Variable Controls toolbar, shown in Figure 7.4). The
Edit Color Map button, second on the left in Active Variable Controls toolbar, opens the
Color Map Editor window, as shown in Figure 2.5, where the user can set a range of attributes
of the colour scale and the color bar.

In particular, ParaView defaults to using a colour scale of blue to white to red rather
than the more common blue to green to red (rainbow). Therefore the first time that the user
executes ParaView, they may wish to change the colour scale. This can be done by selecting
the Choose Preset button, with the heart icon, in the Color Scale Editor. The conventional
color scale for CFD is Blue to Red Rainbow which is only listed if the user types the name in
the Search bar or selects the Rainbow category from the drop-down menu next to the Search
bar.

Images in this manual are created using the Blue to Red Rainbow colour scale. Rainbow
Uniform is a good alternative colour scale which has the advantage of a more uniform distri-
bution of colours. The user can choose either, but if using Rainbow Uniform, screen images
will appear slightly different to those in this manual.

After selecting a rainbow colour scale, click Apply and Close, the user can click the Save
as Default button at the absolute bottom of the panel (file save symbol) so that ParaView
will always adopt this type of colour bar.
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Save as Default

Choose preset
Configure Color Bar

Figure 2.5: Color Map Editor.

The user can also edit the color legend properties, such as text size, font selection and
numbering format for the scale, by clicking the Edit Color Legend Properties to the far right
of the search bar, as shown in Figure 2.5.

2.1.12 Cutting plane (slice)
If the user rotates the image, by holding down the left mouse button in the image window
and moving the cursor, they can see that they have now coloured the complete geometry
surface by the pressure. In order to produce a 2D contour plot the user should first create
a cutting plane, or ‘slice’. With the pitzDailySteady.OpenFOAM module highlighted in the
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Pipeline Browser, the user should select the Slice filter from the Filters menu in the top
menu of ParaView (accessible at the top of the screen on some systems). The Slice filter
can be found in the Common sub-menu or among the Common and Data Analysis buttons,
the third row of buttons at the top of ParaView (see Figure 7.4).

Selecting the Slice filter creates a new item in the Pipeline Browser. In the Properties
window, the cutting plane should have an origin at a point on the z-axis, e.g. (0, 0, 0) and
its normal should be set to (0, 0, 1) (click the Z Normal button).

When Apply is clicked, the slice appears in the RenderView window, while the original
pitzDailySteady.OpenFOAM module disappears. The visibility of each module is enabled
and disabled by the eye button to the left of each module in the pipeline browser.

For the remainder of the manual:

In ParaView, if items do not appear to be displayed in the RenderView window,
ensure the relevant module is visible by switching on the eye button in the Pipeline
Browser.

2.1.13 Vector plots
Before drawing vectors of the flow velocity, turn off the display of the Slice module by
highlighting it in the Pipeline Browser and clicking the eye button to the left of it. The
aim is to generate a vector glyph for velocity at the centre of each cell. We therefore first
need to filter the cell centres from the mesh geometry as described in section 7.1.7. With
the pitzDailySteady.OpenFOAM module highlighted in the Pipeline Browser, the user should
select Cell Centers from the Filters->Alphabetical menu and then click Apply.

With the Centers highlighted in the Pipeline Browser, the user should then select Glyph
from the Filters->Common menu (or the third row of buttons). The Properties window panel
should appear as shown in Figure 2.6.

When displaying velocity vectors, there are four principal settings required for the glyphs:

• the glyph type, set to Arrow;

• the arrow direction, set by Orientation Array;

• the arrow lengths, set by Scale Array and Scale Factor;

• the number of arrows, set by Glyph Mode.

On clicking Apply, the glyphs appear as a single colour, e.g. white. The user should colour
the glyphs by velocity magnitude which, as usual, is controlled by setting U in the drop down
menu towards the left of the second row of buttons.

The Legend is also displayed. The user can configure the legend by clicking Edit Color
Map (second button from left, second row). This opens the the Color Map Editor window.
The legend can be configured by clicking by the button furthest to the right of the search
box. This button opens the Edit Color Legend Properties window. The Advanced Properties
gearwheel button should be checked to the right of the search box.

Titles and labels can be fully configured. For Figure 2.7, the legend title is set to Velocity
U [m/s]. The labels are specified to 1 fixed decimal place by unchecking Automatic Label For-
mat and entering %-#6.1f in the Label Format text box. Add Range Labels is also unchecked.
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Set Arrow
Set Orientation Array: U

Set No Scale Array
Set Scale Factor: 0.001

Set Glyph Mode: All Points

Figure 2.6: Properties panel for the Glyph filter.

Sample output is shown in Figure 2.7, zooming in on part of the recirculation region
downstream of the step. At the lower wall, glyphs point in a direction opposing that of the
flow adjacent to the wall. This glitch is caused by these glyphs being drawn at the face
centres of the wall boundary patch, where the the velocity magnitude is 0 due to the no-slip
condition. Without any direction to the vectors, ParaView orientates the arrows in a default
x-direction. A quick way to remove these vectors is:

• go back to the pitzDailySteady.OpenFOAM module at the top of the Pipeline Browser;

• in the Mesh Parts panel, uncheck the lowerWall patch;

• click Apply.
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Figure 2.7: Velocities in the backward facing step.

2.1.14 Popular filters in ParaView
ParaView includes over 200 filters which can be listed by the Filters->Alphabetical menu.
Only a small fraction, e.g. 10-15, of these filters are relevant for CFD, which we suggest
adding to the Filters->Favourites menu. To do this, select Manage Favourites from the
Filters->Favourites menu. Search for the following important filters and click Add>> to
add them to the Favourites menu:

• Extract Block, to select components of the domain, e.g. boundary patches and inter-
nal cells;

• Slice, to insert a plane through the geometry;

• Cell Centers and Glyph, principally to draw velocity vectors;

• Stream Tracer and Tube, to draw streamlines;

• Contour, to draw contour lines (on surfaces) and iso-surfaces;

• Feature Edges, to capture features on a surface for better image definition.

2.1.15 Contours
Before drawing contour lines of the flow speed, turn off the display of the Glyph module by
highlighting it in the Pipeline Browser and clicking the eye button to its left. The user should
then highlight the Slice module and colour by velocity U. We will then aim to draw contour
lines on the slice at intervals of U of 1, 2, . . . , 10.

The contour lines can be drawn by applying the Contour filter to the slice. The filter
draws lines in 2D, or surfaces in 3D, along constant values of scalar quantities. Contours
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Select Add a range of values

Figure 2.8: Contours in the backward facing step.

cannot be drawn directly from U, since it is a vector, so we first need to generate a scalar
field of the magnitude of U.

The mag(U) field can be generated using post-processing with function objects, described
in section 7.3. The user should run the foamPostProcess utility, calling the mag function
object using the -func option as follows:

foamPostProcess -func "mag(U)"

The utility loops over all time directories. For each time directory, it reads in U, calculates
mag(U) and writes it out as a field file back into the time directory. The mag(U) field must
then be loaded into ParaView by: first, from the pitzDailySteady.OpenFOAM in the Pipeline
Browser, clicking Refresh Times; then, scrolling down to the Fields panel, selecting mag(U)
and clicking Apply.

The user should re-select the Slice module in the Pipeline Browser, then apply the
Contour filter. In the Properties panel, the user should select mag(U) from the Contour By
menu. Under Isosurfaces, the user should first delete the default value by clicking the –
button, then add a range of 10 values as shown in Figure 2.8. The contours can be displayed
with a Wireframe representation with solid black Coloring.

2.1.16 Streamline plots
Before drawing streamlines, the user should turn off the display of the Contour module. To
display streamlines for this 2D example, the user should first highlight the Slice module in
the Pipeline Browser and then apply the Stream Tracer filter.

OpenFOAM-13



U-38 Tutorials

Figure 2.9: Streamlines in the backward facing step.

A new StreamTracer module opens which is configured through its Properties window.
Tracer is created by tracking lines in the direction of flow, starting from seed points. With
Integration Direction BOTH, lines are tracked both upstream and downstream of the
seed points. The user should scroll down the Properties window to configure the Seeds.
The default Seed Type in Line which seeds points along a line drawn between specified
points. In the Line Parameters, the user should can set the two points to (0,−0.025, 0) to
(0.2, 0.0.25, 0). The Resolution specifies the number of seed points distributed along the
line, which should be reduced to 25. On clicking Apply the tracer is generated as shown in
Figure 2.9. The user can experiment with the line points and resolution to produce different
stream tracer output.

2.1.17 Inlet boundary condition
The user should examine the flow at the inlet boundary of the domain. The velocity condition
is specified in 0/U as fixedValue with a value of (10 0 0). This value is applied to all

faces of the inlet boundary patch. The inlet is adjacent to wall boundaries where the noSlip
condition is applied, giving rise to a sudden change in U, between adjacent boundary faces.

The user should zoom in around the inlet region of the geometry using the right button
of the mouse. The Slice module should be activated in the Pipeline Browser and coloured by
cell values of p ( selection). In order to highlight the variation in pressure in cells close to
the inlet, the user should apply a custom range of −5 < p < −1 as shown in Figure 2.10. A
custom range is applied by clicking the Rescale to Custom Data Range button ( ), located
fifth from the left of the second row of buttons. A panel opens, in which the minimum and
maximum values of the range should be entered before clicking the Rescale button. The
velocity profile can be shown by returning to the Glyph module in the Pipeline Browser and
making it visible. The profile can be illustrated by scaling the arrows by the the flow speed.
In the Properties of the Glyph, scroll down to the Scale panel and set Scale Array to U,
with Scale By Magnitude and a Scale Factor of 8e-05. The vectors are assigned a Solid
Color of white.

The figure shows the inlet region adjacent to the lower wall boundary. At the left of the
image, the vectors show a uniform profile. Shear at the wall causes the flow to decelerate,
starting in the near-wall cell. The deceleration causes an increase in pressure, which pro-
duces a driving gradient that redirects the flow slightly away from the wall, to obey mass
conservation.
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inlet
lowerWall

Figure 2.10: Uniform flow at the inlet in the backward facing step.

In order to reduce the pressure increase, the boundary condition can be modified so that
the inlet velocity is no longer uniform. A flowRateInletVelocity boundary condition is a gen-
eral boundary condition for U, specifying flow at an inlet. Documentation for this boundary
condition can be viewed using the foamInfo script, a general tool which provides documenta-
tion for applications, models and tools in OpenFOAM. It is run for the flowRateInletVelocity
boundary condition as follows (noting that the name can sometimes be abbreviated for
simplicity, here flowRateInlet, rather than flowRateInletVelocity).

foamInfo flowRateInlet

It locates and prints the header file of the related code and extracts the Description and
Usage information from the file. It then identifies associated models, i.e. other boundary
conditions in this case, and lists example cases that use the model. The foamInfo script is
not perfect, but provides useful information quickly in at least nine times out of ten.

The documentation explains that the flowRateInletVelocity condition can specify the flow
by a massFlowRate, volumetricFlowRate or meanVelocity. The user should open the 0/U
in their editor and locate the boundary field entry for the inlet patch. The condition with
a meanVelocity can then be applied by changing the inlet sub-dictionary as follows:

inlet
{

type flowRateInletVelocity; // modify
meanVelocity 10; // insert
value uniform (10 0 0); // leave

}

The condition evaluates the velocity on the boundary, setting the value for all faces on the
boundary patch. The value entry is therefore redundant for OpenFOAM, but it can be
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needed by ParaView to display initial values of initialised fields at patches. Therefore, the
value entry is retained for ParaView’s benefit.

After saving the 0/U file, the user can re-run the simulation to check first that the
flowRateInletVelocity emulates the original fixedValue condition. The controlDict file specifies
that case starts from time 0 and it will overwrite previous results in time directories. The
user can test the new condition simply by re-running the foamRun solver.

foamRun

The solver runs as before, terminating at 285 iterations. The user can return to ParaView and
click the Refresh Times button in the pitzDailySteady.OpenFOAM module of the Pipeline
Browser. There is no change to the results, demonstrating that the flowRateInletVelocity is
setting a uniform value of (10 0 0) at this stage.

The user should now modify the flowRateInletVelocity condition in the 0/U file by including
a profile for the velocity. The documentation highlights two customised profile function,
turbulentBL and laminarBL, which provide power-law and quadtratic profiles for fully-
developed turbulent and laminar boundary layers, respectively. In this example, add the
turbulentBL profile to the boundary condition as follows:

inlet
{

type flowRateInletVelocity;
meanVelocity 10;
profile turbulentBL; // add
value uniform (10 0 0);

}

Before running the simulation again, it it recommended to delete the previous solution time
directories. The results should be deleted now because the solver will likely terminate at
a different time, so the results from the final time directory from the old case will not be
overwritten, potentially causing confusion.

The foamListTimes utility provides a quick, simple way to delete solution time directories,
i.e. retaining the 0 directory. First run foamListTimes in the terminal as follows:

foamListTimes

This returns the list of the solution time directories, 100, 200 and 285, but not 0. The listed
directories can be deleted by including the -rm remove option to foamListTimes, i.e. running
the following command.

foamListTimes -rm

With the time directories containing the results now deleted, the foamRun solver should be
run as before. This time foamRun terminates at 276 iterations. The user should return to
ParaView and click the Refresh Times button in the pitzDailySteady.OpenFOAM module of
the Pipeline Browser.
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Figure 2.11: Turbulent boundary layer at the inlet in the backward facing step.

The change in output times may create confusion for ParaView, causing it to query times
in the time selector with (?) symbols. The selector entries can be rebuilt by reverting to time
0 or clicking Cache Mesh and Apply. The user can then select the last time in the sequence
(276). The velocity profile and pressure are updated as shown in Figure 2.11. For pressure,
the custom range is moved to −7 < p < −3. The velocity is no longer uniform at the inlet,
but forms a profile according to the turbulentBL function. The velocity magnitude at the
face adjacent to the lower wall is significantly reduced from previously so the deceleration
due to shear is also reduced in the near-wall cell. The pressure difference between the left
corner and surrounding cells is consequently not as high, approximately +2 m2 s−2 (from -7
to -5) compared to +4 m2 s−2 (from -5 to -1) previously.

2.1.18 Turbulence model
The backward step case is set up to allow users to try out different turbulence models quickly.
There is comment in the momentumTransport file in the constant directory, listing different
turbulence models tested on this case. Some of the models solve equations for fields other
than k and ε, e.g. ω (omega). To minimise the work when changing models, files for these
other fields are already included in the 0 directory. Similarly, entries for schemes and solvers
for these fields are included in the fvSchemes and fvSolution files, respectively (in the system
directory).

The user should open the momentumTransport file in their editor to change the turbulence
model. They can change the model to realizable k–ε by the following setting.

model realizableKE;

The simulation can now be re-run using this model by deleting the solution time directories
and executing foamRun as follows.
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Figure 2.12: Streamlines with the realizable k–ε model.

foamListTimes -rm
foamRun

The solver terminates this time at 255 iterations. The user can now return to ParaView and
click Refresh Times to view the results at time 255. The results are shown in Figure 2.12
using the slice with the velocity field and the streamlines filters configured earlier.

The realizable k–ε model is less diffusive that the standard k–ε model. It captures a
secondary vortex at the base of the step which is approximately half the step height. The
recirculation region is also longer, with reattachment occurring at the point the lower wall
begins to taper towards the outlet.

The user can also test other turbulence models. The k–ω SST model is a popular choice
in industrial CFD which can be selected by the following setting in the momentumTransport
file.

model kOmegaSST;

It requires initialisation of specific turbulent dissipation rate ω. Item can be calculated
similarly to ε in Equation 2.3 using lm as follows:

ω = C−0.25
µ

k0.5

lm
. (2.4)

Using the estimate lm = 2.54 mm as before, ω = 0.09−0.25 × 0.3750.5/0.00254 = 440.2 s−−1.
In the 0/omega file, 440.2 is used both for the initial internalField and the inlet value.

The simulation can now be re-run using this model by deleting the solution time direc-
tories and executing foamRun as before. The solver does not terminate early by converging
to within the tolerances specified in the residualControl sub-dictionary of the fvSolution
file. Instead, it terminates at 2000 iterations, the endTime specified in the controlDict file.

The results with the k–ω SST model show a larger secondary vortex at the base of the
step. The vortex does not stabilise to a steady-state, but instead oscillates a small amount
over successive solution steps. The oscillations can be seen by examining the velocity vectors
at different solution steps, e.g. 1000, 1100, 1200, etc. Figure 2.13 shows the extent of the
secondary vortex and indicates where vectors oscillate around the reattachment point of the
vortex.
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bottom corner of the backward step
vectors oscillate between successive solution steps

Figure 2.13: Secondary vortex with k–ω SST model.

bottom corner of the backward step

Figure 2.14: Secondary vortex with k–ω SST model with limiting on grad(U).

The secondary vortex can be stabilised by a change to the numerical scheme for mo-
mentum advection. The user should open the fvSchemes file from the system directory.
The discretisation of the advection terms is specified by the keyword entries of the form
“div(phi,...)” in the divSchemes sub-dictionary. Momentum advection uses the lin-
earUpwind scheme as shown below.

div(phi,U) bounded Gauss linearUpwind grad(U);

The linearUpwind scheme interpolates fields from cell centres to faces by extrapolation using
the cell gradient. The grad(U) entry specifies the form of the gradient calculation, using the
scheme specified in the gradSchemes sub-dictionary. In the example case, it includes only a
default scheme for calculating all gradient terms in all equations.
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In order to stabilise the secondary vortex, the cellLimited scheme can be applied specif-
ically to the discretisation of the velocity gradient grad(U). The syntax is shown below.

gradSchemes
{

default Gauss linear;
grad(U) cellLimited Gauss linear 1;

}

After saving the fvSchemes file, the simulation can be re-run by deleting the solution time
directories and executing foamRun as before. With the cellLimited scheme applied, the
solution converges normally, with the solver terminating at 285 iterations. The secondary
vortex stabilises as shown in Figure 2.14.

2.2 Breaking of a dam
In this example we shall solve a problem of a simplified dam break in 2 dimensions using the
incompressibleVoF modular solver. The feature of the problem is a transient flow of two fluids
separated by a sharp interface, or free surface. The two-phase algorithm in incompressibleVoF
is based on the volume of fluid (VoF) method in which a phase transport equation is used
to determine the relative volume fraction of the two phases, or phase fraction α, in each
computational cell. Physical properties are calculated as weighted averages based on this
fraction. The nature of the VoF method means that an interface between the phases is not
explicitly computed, but rather emerges as a property of the phase fraction field. Since the
phase fraction can have any value between 0 and 1, the interface is never precisely defined,
but occupies a volume around the region where a sharp interface should exist.

The test setup consists of a column of water at rest located behind a membrane on the
left side of a tank. At time t = 0 s, the membrane is removed and the column of water
collapses. During the collapse, the water impacts an obstacle at the bottom of the tank
and creates a complicated flow structure, including several captured pockets of air. The
geometry and the initial setup is shown in Figure 2.15.

2.2.1 Mesh generation
The user should go to their run directory and copy the damBreakLaminar case from the
$FOAM_TUTORIALS/incompressibleVoF directory, i.e.

run
cp -r $FOAM_TUTORIALS/incompressibleVoF/damBreakLaminar .

Go into the damBreakLaminar case directory and generate the mesh running blockMesh as
described previously. The damBreakLaminar mesh consist of five blocks; the blockMeshDict
entries are given below.

16 convertToMeters 0.146;
17
18 vertices
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Figure 2.15: Geometry of the dam break.

19 (
20 (0 0 0)
21 (2 0 0)
22 (2.16438 0 0)
23 (4 0 0)
24 (0 0.32876 0)
25 (2 0.32876 0)
26 (2.16438 0.32876 0)
27 (4 0.32876 0)
28 (0 4 0)
29 (2 4 0)
30 (2.16438 4 0)
31 (4 4 0)
32 (0 0 0.1)
33 (2 0 0.1)
34 (2.16438 0 0.1)
35 (4 0 0.1)
36 (0 0.32876 0.1)
37 (2 0.32876 0.1)
38 (2.16438 0.32876 0.1)
39 (4 0.32876 0.1)
40 (0 4 0.1)
41 (2 4 0.1)
42 (2.16438 4 0.1)
43 (4 4 0.1)
44 );
45
46 blocks
47 (
48 hex (0 1 5 4 12 13 17 16) (23 8 1) simpleGrading (1 1 1)
49 hex (2 3 7 6 14 15 19 18) (19 8 1) simpleGrading (1 1 1)
50 hex (4 5 9 8 16 17 21 20) (23 42 1) simpleGrading (1 1 1)
51 hex (5 6 10 9 17 18 22 21) (4 42 1) simpleGrading (1 1 1)
52 hex (6 7 11 10 18 19 23 22) (19 42 1) simpleGrading (1 1 1)
53 );
54
55 defaultPatch
56 {
57 type empty;
58 }
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59
60 boundary
61 (
62 leftWall
63 {
64 type wall;
65 faces
66 (
67 (0 12 16 4)
68 (4 16 20 8)
69 );
70 }
71 rightWall
72 {
73 type wall;
74 faces
75 (
76 (7 19 15 3)
77 (11 23 19 7)
78 );
79 }
80 lowerWall
81 {
82 type wall;
83 faces
84 (
85 (0 1 13 12)
86 (1 5 17 13)
87 (5 6 18 17)
88 (2 14 18 6)
89 (2 3 15 14)
90 );
91 }
92 atmosphere
93 {
94 type patch;
95 faces
96 (
97 (8 20 21 9)
98 (9 21 22 10)
99 (10 22 23 11)

100 );
101 }
102 );
103
104
105 // ************************************************************************* //

The mesh is written into a set of files in a polyMesh directory in the constant directory.
The user can list the contents of the directory to reveal the set of files/

ls constant/polyMesh

The files include: points, a list of the cell vertices; faces, a list of the cell faces; owner and
neighbour, containing the indices of cells connected to a given face; boundary, a description
of the boundary patches.

2.2.2 Boundary conditions
The boundary file can be read and understood by the user. The user should take a look at
its contents, either by opening it in a file editor or printing out in the terminal window using
the cat utility.

cat constant/polyMesh/boundary
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The file contains a list of five boundary patches: leftWall, rightWall, lowerWall, atmos-
phere and defaultFaces. The user should notice the type of the patches. Firstly, the
atmosphere is a standard patch, i.e. has no special attributes, merely an entity on which
boundary conditions can be specified. Then, the defaultFaces patch is formed of block
faces that are omitted from the boundary sub-dictionary in the blockMeshDict file. Those
block faces form a patch whose properties are specified in a defaultPatch sub-dictionary in
the blockMeshDict file. In this case, the default type is set to empty since the patch normal
is in the direction we will not solve in this 2D case.

The leftWall, rightWall and lowerWall patches are each a wall. Like the generic
patch, the wall type contains no geometric or topological information about the mesh and
only differs from the plain patch in that it identifies the patch as a wall. This is required
by some modelling, e.g. turbulent wall functions and some turbulence models which include
the distance to the nearest wall in their calculations.

With VoF specifically, surface tension models can include wall adhesion at the contact
point between the interface and wall surface. Wall adhesion models can be applied through
a special boundary condition on the alpha (α) field, e.g. the alphaContactAngle boundary
condition, which requires the user to specify a static contact angle, theta0.

This example ignores surface tension effects between the wall and interface. This can be
done can do this by setting the static contact angle, θ0 = 90◦, but a simpler approach is to
apply the zeroGradient condition to alpha on the walls.

The top boundary is free to the atmosphere so needs to permit both outflow and inflow
according to the internal flow. We therefore use a combination of boundary conditions for
pressure and velocity that does this while maintaining stability. They are:

• prghTotalPressure, applied to the pressure field, minus the hydrostatic component, pρgh,
given by Equation 6.4;

• pressureInletOutletVelocity, applied to velocity U, which sets zeroGradient on all compo-
nents of U, except where there is inflow, in which case a fixedValue condition is applied
to the tangential component;

• inletOutlet applied to other fields, which is a zeroGradient condition when flow outwards,
fixedValue when flow is inwards.

At all wall boundaries, the fixedFluxPressure boundary condition is applied to the pressure
field, which adjusts the pressure gradient so that the boundary flux matches the velocity
boundary condition for solvers that include body forces such as gravity and surface tension.

The defaultFaces patch representing the front and back planes of the 2D problem, is,
as usual, an empty type.

2.2.3 Phases
The fluid phases are specified in the phaseProperties file in the constant directory as follows:

16
17 phases (water air);
18
19 sigma 0.07;
20
21
22 // ************************************************************************* //
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It lists two phases, water and air. Equations for phase fraction are solved for the phases
in the list, except the last phase listed, i.e. air in this case. Since there are only two
phases, only one phase fraction equation is solved in this case, for the water phase fraction
αwater, specified in the file alpha.water in the 0 directory.

The phaseProperties file also contains an entry for the surface tension between the two
phases, specified by the keyword sigma in units Nm−1.

2.2.4 Setting initial fields
Unlike the previous cases, we shall now specify a non-uniform initial condition for the phase
fraction αwater where

αwater =

1 for the water phase
0 for the air phase

(2.5)

This is done by running the setFields utility. It requires a setFieldsDict dictionary, located in
the system directory, whose entries for this case are shown below.

16
17 defaultValues
18 {
19 alpha.water 0;
20 }
21
22 zones
23 {
24 waterColumn
25 {
26 type box;
27 zoneType cell;
28
29 box (0 0 -1) (0.1461 0.292 1);
30
31 values
32 {
33 alpha.water 1;
34 }
35 }
36 }
37
38
39 // ************************************************************************* //

The defaultValues sets the default values of fields, i.e. the value the field takes unless
specified otherwise in zones. The zones sub-dictionary contains one or more zones, which
each zone contain a values entry to override the defaults in that zone. Each zone is defined
as described in section 5.6.

The zone is generated in this example by a box defined by minimum and maximum
bounds, (0, 0,−1) and (0.14610.2921) respectively. This defines the region of cells describing
the water column, where phase fraction αwater is specified as 1.

The setFields utility reads fields from file and, after re-calculating those fields, will write
them back to file. In the damBreakLaminar case, the alpha.water field is initially stored in
its original form with the name alpha.water.orig. A field file with the .orig extension
is read in when the actual file does not exist, so setFields will read alpha.water.orig but
write the resulting output to alpha.water (or alpha.water.gz if compression is switched
on). This way the original file is not overwritten, so can be reused.

The user should execute setFields like any other utility by:
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setFields

Using paraFoam, check that the initial alpha.water field corresponds to the desired distri-
bution as in Figure 2.16.

0.0
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1.0

Phase fraction, α1

Figure 2.16: Initial conditions for phase fraction alpha.water.

2.2.5 Fluid properties

The physical properties for the air and water phases are specified in physicalProperties.air
and physicalProperties.water files, respectively, in the constant directory. Physical properties
describe characteristics of the fluid in a absence of flow. Each file specifies the viscosity
model through the viscosityModel keyword, which is set to constant to indicate the value
is unchanging. The viscosity is then specified by the nu keyword in units m2 s−1. The density
of each fluid is also specified by the keyword rho in units kgm−3. The physicalProperties.air
file is shown below as an example:

16
17 viscosityModel constant;
18
19 nu 1.48e-05;
20
21 rho 1;
22
23
24 // ************************************************************************* //

If the viscosity does change according to the flow, e.g. as in non-Newtonian or visco-elastic
fluids, then those models are specified through the momentumProperties file, as described in
section 8.3.
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2.2.6 Gravity
Gravitational acceleration is uniform across the domain and is specified in a file named g
in the constant directory. Unlike a normal field file, e.g. U and p, g is a uniformDimen-
sionedVectorField and so simply contains a set of dimensions and a value that represents
(0, 9.81, 0) m s−2 for this case:

16
17 dimensions [0 1 -2 0 0 0 0];
18 value (0 -9.81 0);
19
20
21 // ************************************************************************* //

2.2.7 Turbulence modelling
As in the cavity example, the choice of turbulence modelling method is selectable at run-time
through the simulationType keyword in momentumTransport dictionary. In this example,
we wish to run without turbulence modelling so we set laminar:

16
17 simulationType laminar;
18
19
20 // ************************************************************************* //

2.2.8 Time step control
The simulation of the damBreakLaminar case is fully transient so the time step requires
attention. The Courant number Co is an important consideration relating to time step. It
is dimensionless parameter which can be defined for each cell as:

Co = δt|U|
δx

(2.6)

where δt is the time step, |U| is the magnitude of the velocity through that cell and δx is
the cell size in the direction of the velocity. With explicit solution, stability requires the
maximum Co < 1 at least; stricter limits exist depending on the choice of advection scheme.
Implicit solutions do not have the same stability limit of the maximum Co, but temporal
accuracy becomes more relevant as Co increased beyond 1.

Time step control is particularly important with interface-capturing. The incompress-
ibleVoF solver module uses the multidimensional universal limiter for explicit solution (MUL-
ES), created by Henry Weller, to maintain boundedness of the phase fraction. Co needs to
be limited depending on the choice of MULES algorithm. With the original explicit MULES
algorithm, an upper limit of Co ≈ 0.25 for stability is typically required. However, there is
also the semi-implicit version of MULES, specified by the MULESCorr switch in the fvSolution
file. For semi-implicit MULES, there is really no upper limit in Co for stability, but instead
the level is determined by requirements of temporal accuracy.

In general it is difficult to specify a fixed time-step to satisfy the Co criterion since |U| is
changing from cell to cell during the simulation. Instead, automatic adjustment of the time
step is specified in the controlDict by switching adjustTimeStep to on and specifying the
maximum Co for the phase fields, maxAlphaCo, and other fields, maxCo. In this example, the
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maxAlphaCo and maxCo are set to 1.0. The upper limit on time step maxDeltaT can be set
to a value that will not be exceeded in this simulation, e.g. 1.0.

By using automatic time step control, the steps themselves are never rounded to a con-
venient value. Consequently if we request that OpenFOAM saves results at a fixed number
of time step intervals, the times at which results are saved are somewhat arbitrary. How-
ever with automatic time step adjustment, results can be written at fixed times using the
adjustableRunTime option for writeControl in the controlDict dictionary. With this op-
tion, the automatic time stepping procedure further adjusts their time steps so that it ‘hits’
on the exact times specified by the writeInterval, set to 0.05 in this example. The con-
trolDict dictionary entries are shown below.

16
17 solver incompressibleVoF;
18
19 startFrom startTime;
20
21 startTime 0;
22
23 stopAt endTime;
24
25 endTime 1;
26
27 deltaT 0.001;
28
29 writeControl adjustableRunTime;
30
31 writeInterval 0.05;
32
33 purgeWrite 0;
34
35 writeFormat ascii;
36
37 writePrecision 6;
38
39 writeCompression off;
40
41 timeFormat general;
42
43 timePrecision 6;
44
45 runTimeModifiable yes;
46
47 adjustTimeStep yes;
48
49 maxCo 1;
50
51 maxAlphaCo 1;
52
53 maxDeltaT 1;
54
55 DebugSwitches
56 {
57 MULES 1;
58 }
59
60 // ************************************************************************* //

2.2.9 Discretisation schemes
The MULES method, used by the incompressibleVoF modular solver, maintains boundedness
of the phase fraction independently of the underlying numerical scheme, mesh structure, etc.
The choice of schemes for convection are therefore not restricted to those that are strongly
stable or bounded, such as upwind differencing.

The convection schemes settings are made in the divSchemes sub-dictionary of the fv-
Schemes dictionary. In this example, the convection term in the momentum equation,
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∇ • (ρUU), denoted by the div(rhoPhi,U) keyword, uses Gauss linearUpwind grad(U)
to produce good accuracy.

The ∇ • (Uα) term, represented by the div(phi,alpha) keyword uses a bespoke inter-
faceCompression scheme where the specified coefficient is a factor that controls the compres-
sion of the interface where: 0 corresponds to no compression; 1 corresponds to conservative
compression; and, anything larger than 1, relates to enhanced compression of the interface.
We generally use a value of 1.0, as in this example.

The other discretised terms use commonly employed schemes so that the fvSchemes dic-
tionary entries is as follows.

16
17 ddtSchemes
18 {
19 default Euler;
20 }
21
22 gradSchemes
23 {
24 default Gauss linear;
25 }
26
27 divSchemes
28 {
29 div(phi,alpha) Gauss interfaceCompression vanLeer 1;
30
31 div(rhoPhi,U) Gauss linearUpwind grad(U);
32
33 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;
34 }
35
36 laplacianSchemes
37 {
38 default Gauss linear uncorrected;
39 }
40
41 interpolationSchemes
42 {
43 default linear;
44 }
45
46 snGradSchemes
47 {
48 default uncorrected;
49 }
50
51
52 // ************************************************************************* //

2.2.10 Linear-solver control
In the fvSolution file, the sub-dictionary in solvers for alpha.water contains elements that are
specific to the MULES algorithm as shown below.

"alpha.water.*"
{

nAlphaCorr 2;
nAlphaSubCycles 1;

MULESCorr yes;

MULES
{

nIter 10;
tolerance 1e-2;

}
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solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-8;
relTol 0;

}

MULES calculates two limiters to keep the phase fraction within the lower and upper
bounds of 0 and 1. The limiter calculation is iterative, with the maximum number of
iterations specified by nIter and the tolerance specified by tolerance. Here, nIter is set
to a high value (10) but the tolerance setting ensures that number of iterations will not be
reached.

The semi-implicit version of MULES is activated by the MULESCorr switch. It first
calculates an implicit, upwind solution before applying MULES as a higher-order correction.
The linear solver must be configured for the implicit, upwind solution, through the solver,
smoother, tolerance and relTol parameters.

The nAlphaCorr keyword which controls the number of iterations of the phase fraction
equation within a solution step. The iteration is used to overcome nonlinearities in the
advection which are present in this case due to the interfaceCompression scheme.

2.2.11 Running the code
Running of the code has been described in the previous tutorial. Try the following, that uses
tee, a command that enables output to be written to both standard output and files:

foamRun | tee log

The code will now be run interactively, with a copy of output stored in the log file.

2.2.12 Post-processing
Post-processing of the results can now be done in the usual way. The user can monitor the
development of the phase fraction alpha.water in time, e.g. see Figure 2.17.

2.2.13 Running in parallel
The results from the previous example are generated using a fairly coarse mesh. We now
wish to increase the mesh resolution and re-run the case. Using a finer mesh, we can then
demonstrate the parallel processing capability of OpenFOAM.

The user should first clone the damBreakLaminar case, e.g. by

run
foamCloneCase damBreakLaminar damBreakLaminarFine

Change into the new case directory (with cd) and change the blocks description in the
blockMeshDict dictionary to
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Figure 2.17: Phase fraction α at t = 0.25 s (left) and 0.50 s (right).

blocks
(

hex (0 1 5 4 12 13 17 16) (46 10 1) simpleGrading (1 1 1)
hex (2 3 7 6 14 15 19 18) (40 10 1) simpleGrading (1 1 1)
hex (4 5 9 8 16 17 21 20) (46 76 1) simpleGrading (1 2 1)
hex (5 6 10 9 17 18 22 21) (4 76 1) simpleGrading (1 2 1)
hex (6 7 11 10 18 19 23 22) (40 76 1) simpleGrading (1 2 1)

);

Here, the entry is presented as printed from the blockMeshDict file; in short the user must
change the mesh densities, e.g. the 46 10 1 entry, and some of the mesh grading entries to
1 2 1. Once the dictionary is correct, generate the mesh by running blockMesh.

As the mesh has now changed from the damBreakLaminar example, the user must re-
initialise the phase field alpha.water in the 0 time directory since it contains a number of
elements that is inconsistent with the new mesh. Note that there is no need to change the
U and p_rgh fields since they are specified as uniform which is independent of the number
of elements in the field.

The user should then rerun the setFields utility. However, the mesh size is now inconsis-
tent with the number of elements in the alpha.water file in the 0 directory, so the user must
delete that file so that setFields uses the original alpha.water.orig file.

rm 0/alpha.water
setFields
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Parallel computing uses domain decomposition, in which the geometry and associated
fields are broken into pieces and allocated to separate processors for solution. The first step
required to run a parallel case is therefore to decompose the domain using the decomposePar
utility. The decomposePar utility needs to be configured using a decomposeParDict file located
in the system directory. Sample configuration files can be found within the etc directory in the
OpenFOAM installation, which can be copied to the case directory by running the foamGet
script. A decomposeParDict file can therefore be copied by typing:

foamGet decomposeParDict

It responds by offering one of two files, one lightly annotated and one heavily annotated.
The former is suggested by default so hit Enter to accept that file. The user should open the
decomposeParDict file in their editor. The first entry is numberOfSubdomains which specifies
the number of subdomains into which the case will be decomposed, usually corresponding
to the number of processors available for the case. Change the entry as follows.

numberOfSubdomains 4;

This example uses the hierarchical method of decomposition. It requires the hier-
archicalCoeffs to be configured according to the following criteria. The domain is split
into pieces, or subdomains, in the x, y and z directions, the number of subdomains in each
direction being given by the vector n. As this geometry is 2 dimensional, the 3rd direction,
z, cannot be split, hence nz must equal 1. The nx and ny components of n split the domain
in the x and y directions and must be specified so that the number of subdomains specified
by nx and ny equals the specified numberOfSubdomains, i.e. nxny = numberOfSubdomains.

It is beneficial to keep the number of cell faces adjoining the subdomains to a minimum
so, for a square geometry, it is best to keep the split between the x and y directions fairly
even. Since we have 4 subdomains, the user should set nx = ny = 2 as follows.

hierarchicalCoeffs
{

n (2 2 1);
order xyz;

}

The user should now save the file and then run decomposePar by the following command.

decomposePar

The terminal output shows that the decomposition is distributed evenly between the sub-
domains. The decomposition writes the mesh and fields of each sub-domain into separate
sub-directories named processor<N>, where N is the sub-domain ID, e.g. 0, 1, 2, etc. The
user should list the files in the case directory to confirm that four directories processor0,
processor1, processor2 and processor3 exist.

This example presents running in parallel with the openMPI implementation of the stan-
dard message-passing interface (MPI). The following command runs on 4 cores of a local
multi-processor CPU.
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mpirun -np 4 foamRun -parallel

The user can consult section 3.4 for more details of how to run a case in parallel. For
example, the user may run on more nodes over a network by creating a file that lists the
host names of the machines on which the case is to be run as described in section 3.4.3.

2.2.14 Post-processing a case run in parallel
When the case runs in parallel, the results are written into time directories within the
processor<N> sub-directories. The user can confirm this by listing the time directories for
the processor0 directory.

ls processor0

It is possible to post-process an individual sub-domain by treating the individual proc-
essor directory as a case in its own right. For example, to view the processor1 sub-domain
in ParaView, the user can launch paraFoam by running the following command.

paraFoam -case processor1

Figure 2.18 shows the mesh from this sub-domain, following the decomposition of the domain
using the simple method.

Figure 2.18: Mesh of processor 2 in parallel processed case.

The decomposed fields and mesh can also be viewed directly in ParaView, by first running
the paraFoam script as normal.

paraFoam
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When ParaView opens, the user can select the Decomposed Case before hitting Apply. Th
entire case will then appear in the RenderView window.

One further option involves first reassembling the case back to a single domain. The
reconstructPar utility performs this reassembly, taking the field files from time directories
from each processor sub-domain and building equivalent field files for the complete domain.
The user can test this by running.

reconstructPar

The fields are reconstructed are written to solution time directories in the case directory.
These fields can be visualised as normal in ParaView. The results from the fine mesh are
shown in Figure 2.19. The user can see that the resolution of interface has improved signifi-
cantly compared to the coarse mesh.

Figure 2.19: Phase fraction α at t = 0.25 s (left) and 0.50 s (right).

2.3 Stress analysis of a plate with a hole
This tutorial describes how to pre-process, run and post-process a case involving linear-
elastic, steady-state stress analysis on a square plate with a circular hole at its centre. The
plate dimensions are: side length 4 m and radius R = 0.5 m. It is loaded with a uniform
traction of σ = 10 kPa over its left and right faces as shown in Figure 2.20. Two symmetry
planes can be identified for this geometry and therefore the solution domain need only cover
a quarter of the geometry, shown by the shaded area in Figure 2.20.

The problem can be approximated as 2D since the load is applied in the plane of the
plate. In a Cartesian coordinate system there are two possible assumptions to take in regard
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Figure 2.20: Geometry of the plate with a hole.

to the behaviour of the structure in the third dimension: (1) the plane stress condition, in
which the stress components acting out of the 2D plane are assumed to be negligible; (2)
the plane strain condition, in which the strain components out of the 2D plane are assumed
negligible. The plane stress condition is appropriate for solids whose third dimension is thin
as in this case; the plane strain condition is applicable for solids where the third dimension
is thick.

An analytical solution exists for loading of an infinitely large, thin plate with a circular
hole. The solution for the stress normal to the vertical plane of symmetry is

(σxx)x=0 =


σ

(
1 + R2

2y2 + 3R4

2y4

)
for |y| ≥ R

0 for |y| < R

(2.7)

Results from the simulation will be compared with this solution. At the end of the tutorial,
the user can: investigate the sensitivity of the solution to mesh resolution and mesh grading;
and, increase the size of the plate in comparison to the hole to try to estimate the error in
comparing the analytical solution for an infinite plate to the solution of this problem of a
finite plate.

The example uses the solidDisplacement modular solver. The user should go to their run
directory, copy the plateHole case from the $FOAM_TUTORIALS/solidDisplacement directory
and finally change into the plateHole case directory.

run
cp -r $FOAM_TUTORIALS/solidDisplacement/plateHole .
cd plateHole
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Figure 2.21: Block structure of the mesh for the plate with a hole.

2.3.1 Mesh generation
The domain consists of four blocks, some of which have arc-shaped edges. The block structure
for the part of the mesh in the x − y plane is shown in Figure 2.21. As already mentioned
in section 2.1.2, all geometries are generated in 3D in OpenFOAM even if the case is to be
as a 2D problem. Therefore a dimension of the block in the z direction has to be chosen;
here, 0.5 m is selected. It does not affect the solution since the traction boundary condition
is specified as a stress rather than a force, thereby making the solution independent of the
cross-sectional area. The user should open the blockMeshDict file in an editor, as listed
below.

16 convertToMeters 1;
17
18 vertices
19 (
20 (0.5 0 0)
21 (1 0 0)
22 (2 0 0)
23 (2 0.707107 0)
24 (0.707107 0.707107 0)
25 (0.353553 0.353553 0)
26 (2 2 0)
27 (0.707107 2 0)
28 (0 2 0)
29 (0 1 0)
30 (0 0.5 0)
31 (0.5 0 0.5)
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32 (1 0 0.5)
33 (2 0 0.5)
34 (2 0.707107 0.5)
35 (0.707107 0.707107 0.5)
36 (0.353553 0.353553 0.5)
37 (2 2 0.5)
38 (0.707107 2 0.5)
39 (0 2 0.5)
40 (0 1 0.5)
41 (0 0.5 0.5)
42 );
43
44 blocks
45 (
46 hex (5 4 9 10 16 15 20 21) (10 10 1) simpleGrading (1 1 1)
47 hex (0 1 4 5 11 12 15 16) (10 10 1) simpleGrading (1 1 1)
48 hex (1 2 3 4 12 13 14 15) (20 10 1) simpleGrading (1 1 1)
49 hex (4 3 6 7 15 14 17 18) (20 20 1) simpleGrading (1 1 1)
50 hex (9 4 7 8 20 15 18 19) (10 20 1) simpleGrading (1 1 1)
51 );
52
53 edges
54 (
55 arc 0 5 (0.469846 0.17101 0)
56 arc 5 10 (0.17101 0.469846 0)
57 arc 1 4 (0.939693 0.34202 0)
58 arc 4 9 (0.34202 0.939693 0)
59 arc 11 16 (0.469846 0.17101 0.5)
60 arc 16 21 (0.17101 0.469846 0.5)
61 arc 12 15 (0.939693 0.34202 0.5)
62 arc 15 20 (0.34202 0.939693 0.5)
63 );
64
65 boundary
66 (
67 left
68 {
69 type symmetryPlane;
70 faces
71 (
72 (8 9 20 19)
73 (9 10 21 20)
74 );
75 }
76 right
77 {
78 type patch;
79 faces
80 (
81 (2 3 14 13)
82 (3 6 17 14)
83 );
84 }
85 down
86 {
87 type symmetryPlane;
88 faces
89 (
90 (0 1 12 11)
91 (1 2 13 12)
92 );
93 }
94 up
95 {
96 type patch;
97 faces
98 (
99 (7 8 19 18)

100 (6 7 18 17)
101 );
102 }
103 hole
104 {
105 type patch;
106 faces
107 (
108 (10 5 16 21)

OpenFOAM-13



2.3 Stress analysis of a plate with a hole U-61

109 (5 0 11 16)
110 );
111 }
112 frontAndBack
113 {
114 type empty;
115 faces
116 (
117 (10 9 4 5)
118 (5 4 1 0)
119 (1 4 3 2)
120 (4 7 6 3)
121 (4 9 8 7)
122 (21 16 15 20)
123 (16 11 12 15)
124 (12 13 14 15)
125 (15 14 17 18)
126 (15 18 19 20)
127 );
128 }
129 );
130
131
132 // ************************************************************************* //

Until now, we have only specified straight edges in the geometries of previous tutorials but
here we need to specify curved edges. These are specified under the edges keyword entry
which is a list of non-straight edges. The syntax of each list entry begins with the type of
curve, including arc, simpleSpline, polyLine etc., described further in section 5.4.3. In
this example, all the edges are circular and so can be specified by the arc keyword entry.
The following entries are the labels of the start and end vertices of the arc and a point vector
through which the circular arc passes.

The blocks in this blockMeshDict do not all have the same orientation. As can be seen in
Figure 2.21 the x2 direction of block 0 is equivalent to the −x1 direction for block 4. This
means care must be taken when defining the number and distribution of cells in each block
so that the cells match up at the block faces.

Six patches are defined: one for each side of the plate, one for the hole and one for the
front and back planes. The left and down patches are both a symmetry plane. Since this is
a geometric constraint, it is included in the definition of the mesh, rather than being purely
a specification on the boundary condition of the fields. Therefore they are defined as such
using a special symmetryPlane type as shown in the blockMeshDict.

The frontAndBack patch represents the plane which is ignored in a 2D case. Again this
is a geometric constraint so is defined within the mesh, using the empty type as shown in the
blockMeshDict. For further details of boundary types and geometric constraints, the user
should refer to section 5.3.

The remaining patches are of the regular patch type. The mesh should be generated using
blockMesh and can be viewed in paraFoam as described in section 2.1.3. It should appear as
in Figure 2.22.

2.3.2 Boundary and initial conditions
Once the mesh generation is complete, the initial field with boundary conditions must be
set. For a stress analysis case without thermal stresses, only displacement D needs to be set.
The 0/D is as follows:

16 dimensions [0 1 0 0 0 0 0];
17
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Figure 2.22: Mesh of the hole in a plate problem.

18 internalField uniform (0 0 0);
19
20 boundaryField
21 {
22 left
23 {
24 type symmetryPlane;
25 }
26 right
27 {
28 type tractionDisplacement;
29 traction uniform (10000 0 0);
30 pressure uniform 0;
31 value uniform (0 0 0);
32 }
33 down
34 {
35 type symmetryPlane;
36 }
37 up
38 {
39 type tractionDisplacement;
40 traction uniform (0 0 0);
41 pressure uniform 0;
42 value uniform (0 0 0);
43 }
44 hole
45 {
46 type tractionDisplacement;
47 traction uniform (0 0 0);
48 pressure uniform 0;
49 value uniform (0 0 0);
50 }
51 frontAndBack
52 {
53 type empty;
54 }
55 }
56
57 // ************************************************************************* //

Firstly, it can be seen that the displacement initial conditions are set to (0, 0, 0) m. The
left and down patches must be both of symmetryPlane type since they are specified as such
in the mesh description in the constant/polyMesh/boundary file. Similarly the frontAndBack
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patch is declared empty.
The other patches are traction boundary conditions, set by a specialist tractionDis-

placement boundary type. The traction boundary conditions are specified by a linear com-
bination of: (1) a boundary traction vector under keyword traction; (2) a pressure that
produces a traction normal to the boundary surface that is defined as negative when pointing
out of the surface, under keyword pressure. The up and hole patches are zero traction so
the boundary traction and pressure are set to zero. For the right patch the traction should
be (1e4, 0, 0) Pa and the pressure should be 0 Pa.

2.3.3 Physical properties
The physical properties for the case are set in the physicalProperties dictionary in the constant
directory, shown below:

16
17 rho
18 {
19 type uniform;
20 value 7854;
21 }
22
23 nu
24 {
25 type uniform;
26 value 0.3;
27 }
28
29 E
30 {
31 type uniform;
32 value 2e+11;
33 }
34
35 Cv
36 {
37 type uniform;
38 value 434;
39 }
40
41 kappa
42 {
43 type uniform;
44 value 60.5;
45 }
46
47 alphav
48 {
49 type uniform;
50 value 1.1e-05;
51 }
52
53 planeStress yes;
54 thermalStress no;
55
56
57 // ************************************************************************* //

The file includes mechanical properties of steel:

• Density rho = 7854 kgm−3

• Young’s modulus E = 2× 1011 Pa

• Poisson’s ratio nu = 0.3
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The planeStress switch is set to yes to adopt the plane stress assumption in this 2D
case. The solidDisplacementFoam solver may optionally solve a thermal equation that is
coupled with the momentum equation through the thermal stresses that are generated. The
user specifies at run time whether OpenFOAM should solve the thermal equation by the
thermalStress switch (currently set to no). The thermal properties are also specified for
steel for this case, i.e.:

• Specific heat capacity Cp = 434 Jkg−1K−1

• Thermal conductivity kappa = 60.5 Wm−1K−1

• Thermal expansion coefficient alphav = 1.1× 10−5 K−1

For thermal calculations, the temperature field variable T is present in the 0 directory.

2.3.4 Control
As before, the information relating to the control of the solution procedure are read in from
the controlDict dictionary. For this case, the startTime is 0 s. The time step is not important
since this is a steady state case; in this situation it is best to set the time step deltaT to 1
so it simply acts as an iteration counter for the steady-state case. The endTime, set to 100,
then acts as a limit on the number of iterations. The writeInterval can be set to 20.

The controlDict entries are as follows:
16
17 solver solidDisplacement;
18
19 startFrom startTime;
20
21 startTime 0;
22
23 stopAt endTime;
24
25 endTime 100;
26
27 deltaT 1;
28
29 writeControl timeStep;
30
31 writeInterval 20;
32
33 purgeWrite 0;
34
35 writeFormat ascii;
36
37 writePrecision 6;
38
39 writeCompression off;
40
41 timeFormat general;
42
43 timePrecision 6;
44
45 runTimeModifiable true;
46
47 // ************************************************************************* //

2.3.5 Discretisation schemes and linear-solver control
Let us turn our attention to the fvSchemes dictionary. Firstly, the problem we are analysing is
steady-state so the user should select SteadyState for the time derivatives in timeScheme.
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This essentially switches off the time derivative terms. Not all solvers, especially in fluid
dynamics, work for both steady-state and transient problems but solidDisplacementFoam
does work, since the base algorithm is the same for both types of simulation.

The momentum equation in linear-elastic stress analysis includes several explicit terms
containing the gradient of displacement. The calculations benefit from accurate and smooth
evaluation of the gradient. Normally, in the finite volume method the discretisation is based
on Gauss’s theorem. The Gauss method is sufficiently accurate for most purposes but, in this
case, the least squares method will be used. The user should therefore open the fvSchemes
dictionary in the system directory and ensure the leastSquares method is selected for the
grad(U) gradient discretisation scheme in the gradSchemes sub-dictionary:

16
17 d2dt2Schemes
18 {
19 default steadyState;
20 }
21
22 ddtSchemes
23 {
24 default Euler;
25 }
26
27 gradSchemes
28 {
29 default leastSquares;
30 }
31
32 divSchemes
33 {
34 default none;
35 div(sigmaD) Gauss linear;
36 }
37
38 laplacianSchemes
39 {
40 default Gauss linear corrected;
41 }
42
43 interpolationSchemes
44 {
45 default linear;
46 }
47
48 snGradSchemes
49 {
50 default none;
51 }
52
53 // ************************************************************************* //

The fvSolution dictionary in the system directory controls the linear equation solvers and
algorithms used in the solution. The user should first look at the solvers sub-dictionary
and notice that the choice of solver for D is GAMG. The solver tolerance should be set to
10−6 for this problem. The solver relative tolerance, denoted by relTol, sets the required
reduction in the residuals within each iteration. It is uneconomical to set a tight (low)
relative tolerance within each iteration since a lot of terms in each equation are explicit and
are updated as part of the segregated iterative procedure. Therefore a reasonable value for
the relative tolerance is 0.01, or possibly even higher, say 0.1, or in some cases even 0.9 (as
in this case).

16
17 solvers
18 {
19 "(D|e)"
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20 {
21 solver GAMG;
22 tolerance 1e-06;
23 relTol 0.9;
24 smoother GaussSeidel;
25 nCellsInCoarsestLevel 20;
26 }
27 }
28
29 PIMPLE
30 {
31 compactNormalStress yes;
32 }
33
34
35 // ************************************************************************* //

2.3.6 Running the code
The user can now try running foamRun in the background of the terminal. When running an
OpenFOAM application in the background, the standard output (log information) should
be redirected to a file. In the command below, standard output is written to a file named
log which can be examined afterwards.

foamRun > log &

The user should check the convergence information by viewing the generated log file. It
shows the number of iterations and the initial and final residuals of the displacement in each
direction being solved. The final residual should always be less than 0.9 times the initial
residual as this iteration tolerance set. By the end of the simulation, the initial residuals
have reduced towards the convergence tolerance of 10−6.

2.3.7 Post-processing
The solidDisplacementFoam solver outputs the stress field σ as a symmetric tensor field
sigma. To post-process individual scalar field components, σxx, σxy etc., the user can run
the foamPostProcess utility, calling the components function object on the sigma field using
the -func option as follows:

foamPostProcess -func "components(sigma)"

Components named sigmaxx, sigmaxy etc. are written to time directories of the case. The
σxx stresses can be viewed in ParaView as shown in Figure 2.23.

In order to compare the solution to the analytical solution of Equation 2.7, data of σxx
must be extracted along the left edge symmetry plane of our domain. The user may generate
the required graph data using the foamPostProcess utility with the graphUniform function.
Unlike earlier examples of foamPostProcess where no configuration is required, this example
includes a graphUniform file pre-configured in the system directory. The sample line is set
between (0.0, 0.5, 0.25) and (0.0, 2.0, 0.25), and the fields are specified in the fields list:

9 Writes graph data for specified fields along a line, specified by start and
10 end points. A specified number of graph points are used, distributed
11 uniformly along the line.
12
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Figure 2.23: σxx stress field in the plate with hole.

13 \*---------------------------------------------------------------------------*/
14
15 start (0 0.5 0.25);
16 end (0 2 0.25);
17 nPoints 100;
18
19 fields (sigmaxx);
20
21 axis y;
22
23 #includeEtc "caseDicts/functions/graphs/graphUniform.cfg"
24
25 // ************************************************************************* //

The user should execute postProcessing with the graphUniform function:

foamPostProcess -func graphUniform

Data is written in raw 2 column format into files within time subdirectories of a postPro-
cessing/graphUniform directory, e.g. the data at t = 100 s is found within the file graphUni-
form/100/line.xy. If the user has GnuPlot installed they launch it (by typing gnuplot) and
then plot both the numerical data and analytical solution as follows:

plot [0.5:2] [0:] "postProcessing/graphUniform/100/line.xy",
1e4*(1+(0.125/(x**2))+(0.09375/(x**4)))

An example plot is shown in Figure 2.24.
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Figure 2.24: Normal stress along the vertical symmetry (σxx)x=0
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Chapter 3

Applications and libraries

The examples in Chapter 2 show that OpenFOAM provides a range of software ‘tools’ that
are run from a terminal command line. The tools include applications which are executable
programs written in C++, the base programming language of OpenFOAM. Applications
obtain most of the functionality from OpenFOAM’s vast store of pre-compiled libraries, also
written in C++. Since OpenFOAM is open source software, users have the freedom to create
their own applications and libraries. Applications are generally split into two categories:

• solvers, e.g. foamRun, that perform CFD calculations involving fluid dynamics, energy,
etc.;

• utilities, e.g. blockMesh and foamPostProcess, that perform other tasks in CFD like
meshing and post-processing.

Prior to version 11 of OpenFOAM, there were many solvers, since separate ones were writ-
ten for various different types of flow, e.g. simpleFoam, pimpleFoam, etc. However, most flow
solvers are now written as modules, e.g. incompressibleFluid, incompressibleVoF and e.g.solid
which are loaded by the general foamRun (or foamMultiRun) solvers. Rather than existing
as an application, each solver module is compiled into a library of its own.

In addition to applications, the tools in OpenFOAM also include shell scripts, e.g.

paraFoam, foamInfo and foamGet. Many of the scripts help with the configuration of cases.
This chapter gives an overview of applications and libraries, including their creation,

modification, compilation and execution.

3.1 The programming language of OpenFOAM
This chapter provides some information to help understand how OpenFOAM applications
and libraries are compiled. It provides some background knowledge of C++, the base lan-
guage of OpenFOAM. Henry Weller chose C++ as the main programming language of Open-
FOAM when he created it in the late 1980s.

The idea was to use object-oriented programming to express abstract concepts efficiently,
just as verbal language and mathematics can do. For example, in fluid flow, we use the term
“velocity field”, which has meaning without any reference to the nature of the flow or any
specific velocity data. The term encapsulates the idea of movement with direction and
magnitude and relates to other physical properties. In mathematics, “velocity field” can be
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replaced by a single symbol, e.g. U, and other symbols express operations and functions,
e.g. “the field of velocity magnitude” by |U|.

CFD deals with partial differential equations in 3 dimensions of space and time. The
equations contain: fields of scalars, vectors and tensors; tensor algebra; tensor calculus;
and, dimensional units. The solution to these equations involves discretisation procedures,
matrices, solvers, and solution algorithms.

Rather than program CFD in terms of intrinsic entities known to a computer, e.g. bits,
bytes, integers, floating point numbers, OpenFOAM provides classes that define the entities
encountered in CFD. For example, a velocity field can be defined by a vectorField class,
allowing a programmer to create an instance, or object, of that class. The object can be
created with the name U to mimic the symbol used in mathematics. Associated functions
can be created with names which also try to emulate the simplicity of mathematics, e.g.
mag(U) can represent |U|.

The class structure concentrates code development to contained regions of the code, i.e.
the classes themselves, thereby making the code easier to manage. New classes can be
derived or inherit properties from other classes, e.g. the vectorField can be derived from a
vector class and a Field class. C++ provides the mechanism of template classes such that the
template class Field<Type> can represent a field of any <Type>, e.g.scalar, vector, tensor. The
general features of the template class are passed on to any class created from the template.
Templating and inheritance reduce duplication of code and create class hierarchies that
impose an overall structure on the code.

A theme of the OpenFOAM design is that it has a syntax that closely resembles the
partial differential equations being solved. For example the equation

∂ρU
∂t

+∇ •ϕU−∇ •µ∇U = −∇p

is represented by the code

solve
(

fvm::ddt(rho, U)
+ fvm::div(phi, U)
- fvm::laplacian(mu, U)

==
- fvc::grad(p)

);

The equation syntax is most evident in the code for solvers, both the modules and solver
applications. Users do not need a deep knowledge of C++ programming to interpret the
equations written in a solver. Instead, an understanding of the underlying equations, models
and solution method and algorithms is perhaps more helpful, which can be found in Notes

on Computational Fluid Dynamics: General Principles.
It does help to have a rudimentary understanding of the the principles behind object-

orientation and classes, and to have a basic knowledge of some C++ code syntax. To program
in OpenFOAM, there is often little need for a user to immerse themselves in the code of
any of the OpenFOAM classes. The essence of object-orientation is that the user should
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not have to go through the code of each class they use; merely the knowledge of the class’
existence and its functionality are sufficient to use the class. A description of each class
and its functions is supplied with the OpenFOAM distribution in HTML documentation
generated with Doxygen at https://cpp.openfoam.org

3.2 Compiling applications and libraries

Compilation is an integral part of code development that requires careful management since
every piece of code requires its own set instructions to access dependent components of the
OpenFOAM library. In Linux systems there are various tools to help automate the man-
agement process, starting with the standard make utility. OpenFOAM uses its own wmake
compilation script that is based on make. It is specifically designed for the large number
of individual components that are compiled separately in OpenFOAM (approximately 150
applications and 150 libraries).

To understand the compilation process, we first need to explain certain aspects of C++
and its file structure, shown schematically in Figure 3.1. A class is defined through a set of
instructions such as object construction, data storage and class member functions. The file
that defines these functions — the class definition — takes a .C extension, e.g. a class nc
would be written in the file nc.C. This file can be compiled independently of other code into
a binary executable library file known as a shared object library with the .so file extension,
i.e.nc.so. When compiling a piece of code, say newApp.C, that uses the nc class, nc.C need
not be recompiled, rather newApp.C calls the nc.so library at runtime. This is known as
dynamic linking.

int main()

...

...
return(0);

{

}

nc.so
Library

option-I#include "nc.H"

Main code

Definition...

Compiled

nc.H

nc.C
#include "nc.H"

nc class

Declaration...

Compiled

Executable

Header file

Linked
option-l

newApp.C

newApp

Figure 3.1: Header files, source files, compilation and linking
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3.2.1 Header .H files
As a means of checking errors, the piece of code being compiled must know that the classes
it uses and the operations they perform actually exist. Therefore each class requires a class
declaration, contained in a header file with a .H file extension, e.g. nc.H, that includes the
names of the class and its functions. This file is included at the beginning of any piece
of code using the class, using the #include directive described below, including the class
declaration code itself. Any piece of .C code can resource any number of classes and must
begin by including all the .H files required to declare these classes. Those classes in turn
can resource other classes and so also begin by including the relevant .H files. By searching
recursively down the class hierarchy we can produce a complete list of header files for all the
classes on which the top level .C code ultimately depends; these .H files are known as the
dependencies. With a dependency list, a compiler can check whether the source files have
been updated since their last compilation and selectively compile only those that need to be.

Header files are included in the code using the #include directive, e.g.

#include "otherHeader.H";

This causes the compiler to suspend reading from the current file, to read the included file.
This mechanism allows any self-contained piece of code to be put into a header file and
included at the relevant location in the main code in order to improve code readability.
For example, in most OpenFOAM applications the code for creating fields and reading field
input data is included in a file createFields.H which is called at the beginning of the code. In
this way, header files are not solely used as class declarations.

It is wmake that performs the task of maintaining file dependency lists amongst other
functions listed below.

• Automatic generation and maintenance of file dependency lists, i.e. lists of files which
are included in the source files and hence on which they depend.

• Multi-platform compilation and linkage, handled through appropriate directory struc-
ture.

• Multi-language compilation and linkage, e.g. C, C++, Java.

• Multi-option compilation and linkage, e.g. debug, optimised, parallel and profiling.

• Support for source code generation programs, e.g. lex, yacc, IDL, MOC.

• Simple syntax for source file lists.

• Automatic creation of source file lists for new codes.

• Simple handling of multiple shared or static libraries.
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3.2.2 Compiling with wmake
OpenFOAM applications are organised using a standard convention that the source code of
each application is placed in a directory whose name is that of the application. The top
level source file then takes the application name with the .C extension. For example, the
source code for an application called newApp would reside is a directory newApp and the
top level file would be newApp.C as shown in Figure 3.2. wmake then requires the directory

newApp

newApp.C

otherHeader.H

Make

files

options

Figure 3.2: Directory structure for an application

must contain a Make subdirectory containing 2 files, options and files, that are described in
the following sections.

3.2.3 Including headers
The compiler searches for the included header files in the following order, specified with the
-I option in wmake:

1. the $WM_PROJECT_DIR/src/OpenFOAM/lnInclude directory;

2. a local lnInclude directory, i.e.newApp/lnInclude;

3. the local directory, i.e.newApp;

4. platform dependent paths set in files in the $WM_PROJECT_DIR/wmake/rules direc-
tory, e.g./usr/include/X11;

5. other directories specified explicitly in the Make/options file with the -I option.

The Make/options file contains the full directory paths to locate header files using the syntax:

EXE_INC = \
-I<directoryPath1> \
-I<directoryPath2> \
... \
-I<directoryPathN>

Notice first that the directory names are preceded by the -I flag and that the syntax uses
the \ to continue the EXE_INC across several lines, with no \ after the final entry.
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3.2.4 Linking to libraries
The compiler links to shared object library files in the following directory paths, specified
with the -L option in wmake:

1. the $FOAM_LIBBIN directory;

2. platform dependent paths set in files in the $WM_DIR/rules directory, e.g.$(MPI_-
ARCH_PATH)/lib;

3. other directories specified in the Make/options file.

The actual library files to be linked must be specified using the -l option and removing the
lib prefix and .so extension from the library file name, e.g. libnew.so is included with the
flag -lnew. By default, wmake loads the following libraries:

1. the libOpenFOAM.so library from the $FOAM_LIBBIN directory;

2. platform dependent libraries specified in set in files in the $WM_DIR/rules directory,
e.g. libm.so and libdl.so;

3. other libraries specified in the Make/options file.

The Make/options file contains the full directory paths and library names using the syntax:

EXE_LIBS = \
-L<libraryPath> \
-l<library1> \
-l<library2> \
... \
-l<libraryN>

To summarise: the directory paths are preceded by the -L flag, the library names are pre-
ceded by the -l flag.

3.2.5 Source files to be compiled
The compiler requires a list of .C source files that must be compiled. The list must contain
the main .C file but also any other source files that are created for the specific application
but are not included in a class library. For example, users may create a new class or some
new functionality to an existing class for a particular application. The full list of .C source
files must be included in the Make/files file. For many applications the list only includes the
name of the main .C file, e.g. newApp.C in the case of our earlier example.

TheMake/files file also includes a full path and name of the compiled executable, specified
by the EXE = syntax. Standard convention stipulates the name is that of the application,
i.e.newApp in our example. The OpenFOAM release offers two useful choices for path:
standard release applications are stored in $FOAM_APPBIN; applications developed by the
user are stored in $FOAM_USER_APPBIN.
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If the user is developing their own applications, we recommend they create an applications
subdirectory in their $WM_PROJECT_USER_DIR directory containing the source code for
personal OpenFOAM applications. As with standard applications, the source code for each
OpenFOAM application should be stored within its own directory. The only difference
between a user application and one from the standard release is that the Make/files file
should specify that the user’s executables are written into their $FOAM_USER_APPBIN
directory. The Make/files file for our example would appear as follows:

newApp.C

EXE = $(FOAM_USER_APPBIN)/newApp

3.2.6 Running wmake
The wmake script is generally executed by typing:

wmake <optionalDirectory>

The <optionalDirectory> is the directory path of the application that is being compiled.
Typically, wmake is executed from within the directory of the application being compiled, in
which case <optionalDirectory> can be omitted.

3.2.7 wmake environment variables
For information, the general environment variable settings used by wmake are listed below.

• $WM_PROJECT_INST_DIR: full path to the installation directory, e.g.$HOME/Open-
FOAM.

• $WM_PROJECT: name of the project being compiled, i.e. OpenFOAM.

• $WM_PROJECT_VERSION: version of the project being compiled, i.e. 13.

• $WM_PROJECT_DIR: full path to the main directory of the OpenFOAM release, e.g.
$HOME/OpenFOAM/OpenFOAM-13.

• $WM_PROJECT_USER_DIR: full path to the equivalent directory for customised de-
velopments in the user account, e.g. $HOME/OpenFOAM/${USER}-13.

• $WM_THIRD_PARTY_DIR: full path to the directory of ThirdParty software, e.g.

$HOME/OpenFOAM/ThirdParty-13.

The environment variable settings for the compilation with wmake are listed below.

• $WM_ARCH: machine architecture, e.g. linux, linux64, linuxArm64, linuxARM7,
linuxPPC64, linuxPPC64le.

• $WM_ARCH_OPTION: 32 or 64 bit architecture.
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• $WM_DIR: full path of the wmake directory.

• $WM_LABEL_SIZE: 32 or 64 bit size for labels (integers).

• $WM_LABEL_OPTION: Int32 or Int64 compilation of labels.

• $WM_LINK_LANGUAGE: compiler used to link libraries and executables c++.

• $WM_MPLIB: parallel communications library, SYSTEMOPENMPI = system version of
openMPI, alternatives include OPENMPI, SYSTEMMPI, MPICH, MPICH-GM, HPMPI, MPI,
QSMPI, INTELMPI and SGIMPI.

• $WM_OPTIONS, e.g. linux64GccDPInt32Opt, formed by combining $WM_ARCH,
$WM_COMPILER, $WM_PRECISION_OPTION, $WM_LABEL_OPTION, and $WM-
_COMPILE_OPTION.

• $WM_PRECISION_OPTION: floating point precision of the compiled binares, SP =
single precision, DP = double precision.

The environment variable settings relating to the choice of compiler and options withwmake
are listed below.

• $WM_CC: choice of C compiler, gcc.

• $WM_CFLAGS: extra flags to the C compiler, e.g. -m64 -fPIC.

• $WM_CXX: choice of C++ compiler, g++.

• $WM_CXXFLAGS: extra flags to the C++ compiler, e.g. -m64 -fPIC -std=c++0x.

• $WM_COMPILER: compiler being used, e.g. Gcc = gcc, Clang = LLVM Clang

• $WM_COMPILE_OPTION: compilation option, Debug = debugging, Opt = optimised.

• $WM_COMPILER_LIB_ARCH: compiler library architecture, e.g. 64.

• $WM_COMPILER_TYPE: choice of compiler, system, or ThirdParty, i.e. compiled in
ThirdParty directory.

• $WM_LDFLAGS: extra flags for the linker, e.g. -m64.

• $WM_LINK_LANGUAGE: linker language, e.g. c++.

• $WM_OSTYPE: Operating system, POSIX.
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3.2.8 Removing dependency lists: wclean
When it is run, wmake builds a dependency list file with a .dep file extension, e.g. newApp.C-
.dep in our example, in a $WM_OPTIONS sub-directory of theMake directory, e.g.Make/linux-
GccDPInt64Opt. If the user wishes to remove these files, e.g. after making code changes, the
user can run the wclean script by typing:

wclean <optionalDirectory>

Again, the <optionalDirectory> is a path to the directory of the application that is being
compiled. Typically, wclean is executed from within the directory of the application, in which
case the path can be omitted.

3.2.9 Compiling libraries
When compiling a library, there are 2 critical differences in the configuration of the file in
the Make directory:

• in the files file, EXE = is replaced by LIB = and the target directory for the compiled
entity changes from $FOAM_APPBIN to $FOAM_LIBBIN (and an equivalent $FOAM_USER_-
LIBBIN directory);

• in the options file, EXE_LIBS = is replaced by LIB_LIBS = to indicate libraries linked
to library being compiled.

When wmake is executed it additionally creates a directory named lnInclude that contains
soft links to all the files in the library. The lnInclude directory is deleted by the wclean script
when cleaning library source code.

3.2.10 Compilation example: the foamRun application
The source code for application foamRun is in the $FOAM_SOLVERS/foamRun directory and
the top level source file is named foamRun.C. The foamRun.C source code is:

1 /*---------------------------------------------------------------------------*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration | Website: https://openfoam.org
5 \\ / A nd | Copyright (C) 2022-2025 OpenFOAM Foundation
6 \\/ M anipulation |
7 -------------------------------------------------------------------------------
8 License
9 This file is part of OpenFOAM.

10
11 OpenFOAM is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15
16 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23
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24 Application
25 foamRun
26
27 Description
28 Loads and executes an OpenFOAM solver module either specified by the
29 optional \c solver entry in the \c controlDict or as a command-line
30 argument.
31
32 Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
33 pseudo-transient and steady simulations.
34
35 Usage
36 \b foamRun [OPTION]
37
38 - \par -solver <name>
39 Solver name
40
41 - \par -libs '(\"lib1.so\" ... \"libN.so\")'
42 Specify the additional libraries loaded
43
44 Example usage:
45 - To run a \c rhoPimpleFoam case by specifying the solver on the
46 command line:
47 \verbatim
48 foamRun -solver fluid
49 \endverbatim
50
51 - To update and run a \c rhoPimpleFoam case add the following entry to
52 the controlDict:
53 \verbatim
54 solver fluid;
55 \endverbatim
56 then execute \c foamRun
57
58 \*---------------------------------------------------------------------------*/
59
60 #include "argList.H"
61 #include "solver.H"
62 #include "pimpleSingleRegionControl.H"
63 #include "setDeltaT.H"
64
65 using namespace Foam;
66
67 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
68
69 int main(int argc, char *argv[])
70 {
71 argList::addOption
72 (
73 "solver",
74 "name",
75 "Solver name"
76 );
77
78 #include "setRootCase.H"
79 #include "createTime.H"
80
81 // Read the solverName from the optional solver entry in controlDict
82 word solverName
83 (
84 runTime.controlDict().lookupOrDefault("solver", word::null)
85 );
86
87 // Optionally reset the solver name from the -solver command-line argument
88 args.optionReadIfPresent("solver", solverName);
89
90 // Check the solverName has been set
91 if (solverName == word::null)
92 {
93 args.printUsage();
94
95 FatalErrorIn(args.executable())
96 << "solver not specified in the controlDict or on the command-line"
97 << exit(FatalError);
98 }
99 else

100 {
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101 // Load the solver library
102 solver::load(solverName);
103 }
104
105 // Create the default single region mesh
106 #include "createMesh.H"
107
108 // Instantiate the selected solver
109 autoPtr<solver> solverPtr(solver::New(solverName, mesh));
110 solver& solver = solverPtr();
111
112 // Create the outer PIMPLE loop and control structure
113 pimpleSingleRegionControl pimple(solver.pimple);
114
115 // Set the initial time-step
116 setDeltaT(runTime, solver);
117
118 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
119
120 Info<< nl << "Starting time loop\n" << endl;
121
122 while (pimple.run(runTime))
123 {
124 solver.preSolve();
125
126 // Adjust the time-step according to the solver maxDeltaT
127 adjustDeltaT(runTime, solver);
128
129 runTime++;
130
131 Info<< "Time = " << runTime.userTimeName() << nl << endl;
132
133 // PIMPLE corrector loop
134 while (pimple.loop())
135 {
136 if (solver.pimple.flow())
137 {
138 solver.moveMesh();
139 solver.motionCorrector();
140 }
141
142 if (solver.pimple.models())
143 {
144 solver.fvModels().correct();
145 }
146
147 solver.prePredictor();
148
149 if (solver.pimple.predictTransport())
150 {
151 if (solver.pimple.flow())
152 {
153 solver.momentumTransportPredictor();
154 }
155
156 if (solver.pimple.thermophysics())
157 {
158 solver.thermophysicalTransportPredictor();
159 }
160 }
161
162 if (solver.pimple.flow())
163 {
164 solver.momentumPredictor();
165 }
166
167 if (solver.pimple.thermophysics())
168 {
169 solver.thermophysicalPredictor();
170 }
171
172 if (solver.pimple.flow())
173 {
174 solver.pressureCorrector();
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175 }
176
177 if (solver.pimple.correctTransport())
178 {
179 if (solver.pimple.flow())
180 {
181 solver.momentumTransportCorrector();
182 }
183
184 if (solver.pimple.thermophysics())
185 {
186 solver.thermophysicalTransportCorrector();
187 }
188 }
189 }
190
191 solver.postSolve();
192
193 runTime.write();
194
195 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
196 << " ClockTime = " << runTime.elapsedClockTime() << " s"
197 << nl << endl;
198 }
199
200 Info<< "End\n" << endl;
201
202 return 0;
203 }
204
205
206 // ************************************************************************* //

The code begins with a description of the application contained within comments over 1
line (//) and multiple lines (/*...*/). Following that, the code contains several # include
statements, e.g. # include "argList.H", which causes the compiler to suspend reading
from the current file, foamRun.C to read the argList.H file.

foamRun uses the finite volume numerics library and therefore requires the necessary
header files, specified by the EXE_INC = -I... option, and links to the libraries with the
EXE_LIBS = -l... option. The Make/options therefore contains the following:

1 EXE_INC = \
2 -I$(LIB_SRC)/finiteVolume/lnInclude
3
4 EXE_LIBS = \
5 -lfiniteVolume

foamRun contains the foamRun.C source and the executable is written to the $FOAM_APPBIN
directory. The application uses functions to initialise and adjust the time step, defined in
the setDeltaT.C file. The Make/files therefore contains:

1 setDeltaT.C
2 foamRun.C
3
4 EXE = $(FOAM_APPBIN)/foamRun

Following the recommendations of section 3.2.5, the user can compile a separate version of
foamRun into their local $FOAM_USER_DIR directory as follows. First, the user should copy
the foamRun source code to a local directory, e.g. $FOAM_RUN.

cd $FOAM_RUN
cp -r $FOAM_SOLVERS/foamRun .

They should then go into the foamRun directory.
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cd foamRun

and edit the Make/files file as follows:
1 foamRun.C
2
3 EXE = $(FOAM_USER_APPBIN)/foamRun

Finally, they should run the wmake script.

wmake

The code should compile and produce a message similar to the following

Making dependency list for source file foamRun.C
g++ -std=c++14 -m64...
...
-o ... platforms/linux64GccDPInt32Opt/bin/foamRun

If the user tries recompiling without making any changes to the code file, nothing will happen.
The user can compile the application from scratch by removing the dependency list with

wclean

and running wmake.

3.2.11 Debug messaging and optimisation switches
OpenFOAM provides a system of messaging that is written during runtime, most of which
are to help debugging problems encountered during running of a OpenFOAM case. The
switches are listed in the $WM_PROJECT_DIR/etc/controlDict file; should the user wish
to change the settings they should make a copy to their $HOME directory, i.e. $HOME/-
.OpenFOAM/13/controlDict file (see section 4.3 for more information). The list of possible
switches is extensive, relating to a class or range of functionality, and can be switched on by
their inclusion in the controlDict file, and by being set to 1. For example, OpenFOAM can
perform the checking of dimensional units in all calculations by setting the dimensionSet
switch to 1.

A small number of switches control messaging at three levels, 0, 1 and 2, most notably
the overall level switch and lduMatrix which provides messaging for solver convergence
during a run.

There are some switches that control certain operational and optimisation issues. Of
particular importance is fileModificationSkew. OpenFOAM scans the write time of data
files to check for modification. When running over a NFS with some disparity in the clock
settings on different machines, field data files appear to be modified ahead of time. This can
cause a problem if OpenFOAM views the files as newly modified and attempting to re-read
this data. The fileModificationSkew keyword is the time in seconds that OpenFOAM will
subtract from the file write time when assessing whether the file has been newly modified.
The main optimisation switches are listed below:
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• fileModificationSkew: a time in seconds that should be set higher than the maxi-
mum delay in NFS updates and clock difference for running OpenFOAM over a NFS.

• fileModificationChecking: method of checking whether files have been modified
during a simulation, either reading the timeStamp or using inotify; versions that
read only master-node data also exist, termed timeStampMaster and inotifyMaster.

• commsType: parallel communications type, nonBlocking, scheduled or blocking.

• floatTransfer: if 1, will compact numbers to float precision before transfer; default
is 0.

• nProcsSimpleSum: optimises the global sum for parallel processing, by setting the
number of processors above which a hierarchical sum is performed rather than a linear
sum.

3.2.12 Dynamic linking at run-time
The situation may arise that a user creates a new library, say new1, and wishes the features
within that library to be available across a range of applications. For example, the user may
create a new boundary condition, compiled into new1, that would need to be recognised by a
range of solver applications, pre- and post-processing utilities, mesh tools, etc. Under normal
circumstances, the user would need to recompile every application with the new1 linked to
it.

Instead there is a simple mechanism to link one or more shared object libraries dynami-
cally at run-time in OpenFOAM. The use can simply add the optional keyword entry libs
to the controlDict file for a case and enter the full names of the libraries within a list (as
quoted string entries). For example, if a user wished to link the libraries new1 and new2 at
run-time, they would simply need to add the following to the case controlDict file:

libs
(

"libnew1.so"
"libnew2.so"

);

3.3 Running applications
Each application is designed to be executed from a terminal command line, typically reading
and writing a set of data files associated with a particular case. The data files for a case are
stored in a directory named after the case as described in section 4.1; the directory name
with full path is here given the generic name <caseDir>.

For any application, the form of the command line entry for any can be found by simply
entering the application name at the command line with the -help option, e.g. typing

foamRun -help
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returns the usage

Usage: foamRun [OPTIONS]
options:

-case <dir> specify alternate case directory, default is cwd
-fileHandler <handler>

override the fileHandler
-hostRoots <((host1 dir1) .. (hostN dirN))>

slave root directories for distributed running
-libs '("lib1.so" ... "libN.so")'

pre-load libraries
-noFunctionObjects

do not execute functionObjects
-parallel run in parallel
-roots <(dir1 .. dirN)>

slave root directories for distributed running
-solver <name> Solver name
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage

If the application is executed from within a case directory, it will operate on that case.
Alternatively, the -case <caseDir> option allows the case to be specified directly so that
the application can be executed from anywhere in the filing system.

Like any UNIX/Linux executable, applications can be run as a background process, i.e. one
which does not have to be completed before the user can give the shell additional commands.
If the user wished to run the foamRun example as a background process and output the case
progress to a log file, they could enter:

foamRun > log &

3.4 Running applications in parallel
This section describes how to run OpenFOAM in parallel on distributed processors. The
method of parallel computing used by OpenFOAM is known as domain decomposition, in
which the geometry and associated fields are broken into pieces and allocated to separate
processors for solution. The process of parallel computation involves: decomposition of mesh
and fields; running the application in parallel; and, post-processing the decomposed case as
described in the following sections. The parallel running uses the public domain openMPI
implementation of the standard message passing interface (MPI) by default, although other
libraries can be used.

3.4.1 Decomposition of mesh and initial field data
The mesh and fields are decomposed using the decomposePar utility. The underlying aim is
to break up the domain with minimal effort but in such a way to guarantee an economic
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solution. The geometry and fields are broken up according to a set of parameters specified
in a dictionary named decomposeParDict that must be located in the system directory of the
case of interest. An example decomposeParDict dictionary can be copied into a case system
directory using the foamGet script.

foamGet decomposeParDict

The dictionary entries within it are reproduced below.
16 numberOfSubdomains 8;
17
18 /*
19 Main methods are:
20 1) Geometric: "simple"; "hierarchical", with ordered sorting, e.g. xyz, yxz
21 2) Scotch: "scotch", when running in serial; "ptscotch", running in parallel
22 */
23
24 method hierarchical;
25
26 simpleCoeffs
27 {
28 n (4 2 1); // total must match numberOfSubdomains
29 }
30
31 hierarchicalCoeffs
32 {
33 n (4 2 1); // total must match numberOfSubdomains
34 order xyz;
35 }
36
37
38 // ************************************************************************* //

The user has a choice of four methods of decomposition, specified by the method keyword
as described below.

simple Simple geometric decomposition in which the domain is split into pieces by direction,
e.g. 2 pieces in the x direction, 1 in y etc.

hierarchical Hierarchical geometric decomposition which is the same as simple except the
user specifies the order in which the directional split is done, e.g. first in the y-direction,
then the x-direction etc.

scotch Scotch decomposition which requires no geometric input from the user and attempts
to minimise the number of processor boundaries. The user can specify a weighting for
the decomposition between processors, through an optional processorWeights key-
word which can be useful on machines with differing performance between processors.
There is also an optional keyword entry strategy that controls the decomposition
strategy through a complex string supplied to Scotch. For more information, see the
source code file: $FOAM_SRC/parallel/decompose/scotchDecomp/scotchDecomp.C

For each method there are a set of coefficients specified in a sub-dictionary of decomposi-
tionDict, named <method>Coeffs as shown in the dictionary listing. The full set of keyword
entries in the decomposeParDict dictionary are explained below:

• numberOfSubdomains: total number of subdomains N .

• method: method of decomposition, simple, hierarchical, scotch.
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• n: for simple and hierarchical, number of subdomains in x, y, z (nx ny nz)

• order: order of hierarchical decomposition, xyz/xzy/yxz. . .

• processorWeights option for scotch: list of weighting factors (<wt1>...<wtN>) for
allocation of cells to processors; <wt1> is the weighting factor for processor 1, etc.;
weights are normalised so can take any range of values.

The decomposePar utility is executed in the normal manner by typing

decomposePar

3.4.2 File input/output in parallel
Using standard file input/output completion, a set of subdirectories will have been created,
one for each processor, in the case directory. The directories are named processorN where
N = 0, 1, . . . represents a processor number and contains a time directory, containing the
decomposed field descriptions, and a constant/polyMesh directory containing the decomposed
mesh description.

While this file structure is well-organised, for large parallel cases, it generates a large
number of files. In very large simulations, users can experience problems including hitting
limits on the number of open files imposed by the operating system.

As an alternative, the collated file format was introduced in OpenFOAM in which the
data for each decomposed field (and mesh) is collated into a single file that is written (and
read) on the master processor. The files are stored in a single directory named processors.

The file writing can be threaded allowing the simulation to continue running while the
data is being written to file — see below for details. NFS (Network File System) is not needed
when using the collated format and, additionally, there is a masterUncollated option to
write data with the original uncollated format without NFS.

The controls for the file handling are in the OptimisationSwitches of the global etc/-
controlDict file:

OptimisationSwitches
{

...

//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;

//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;

//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;

}

The fileHandler can be set for a specific simulation by:
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• over-riding the global OptimisationSwitches {fileHandler ...;} in the case con-
trolDict file;

• using the -fileHandler command line argument to the solver;

• setting the $FOAM_FILEHANDLER environment variable.

A foamFormatConvert utility allows users to convert files between the collated and uncol-
lated formats, e.g.

mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated

An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/fluid/iglooWithFridges

Collated file handling runs faster with threading, especially on large cases. But it requires
threading support to be enabled in the underlying MPI. Without it, the simulation will
“hang” or crash. For openMPI, threading support is not set by default prior to version 2,
but is generally switched on from version 2 onwards. The user can check whether openMPI
is compiled with threading support by the following command:

ompi_info -c | grep -oE "MPI_THREAD_MULTIPLE[^,]*"

When using the collated file handling, memory is allocated for the data in the thread.
maxThreadFileBufferSize sets the maximum size of memory that is allocated in bytes. If
the data exceeds this size, the write does not use threading.

Note: if threading is not enabled in the MPI, it must be disabled for collated file
handling by setting in the global etc/controlDict file:

maxThreadFileBufferSize 0;

When using the masterUncollated file handling, non-blocking MPI communication re-
quires a sufficiently large memory buffer on the master node. maxMasterFileBufferSize
sets the maximum size of the buffer. If the data exceeds this size, the system uses scheduled
communication.

3.4.3 Running a decomposed case
A decomposed OpenFOAM case is run in parallel using the openMPI implementation of
MPI. openMPI can be run on a local multiprocessor machine very simply but when running
on machines across a network, a file must be created that contains the host names of the
machines. The file can be given any name and located at any path. In the following
description we shall refer to such a file by the generic name, including full path, <machines>.

The <machines> file contains the names of the machines listed one machine per line. The
names must correspond to a fully resolved hostname in the /etc/hosts file of the machine
on which the openMPI is run. The list must contain the name of the machine running the
openMPI. Where a machine node contains more than one processor, the node name may be
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followed by the entry cpu=n where n is the number of processors openMPI should run on
that node.

For example, let us imagine a user wishes to run openMPI from machine aaa on the
following machines: aaa; bbb, which has 2 processors; and ccc. The <machines> would
contain:

aaa
bbb cpu=2
ccc

An application is run in parallel using mpirun.

mpirun --hostfile <machines> -np <nProcs>
<foamExec> <otherArgs> -parallel > log &

where: <nProcs> is the number of processors; <foamExec> is the executable, e.g.foamRun;
and, the output is redirected to a file named log. For example, if foamRun is run on 4 nodes,
specified in a file named machines, then the following command should be executed:

mpirun --hostfile machines -np 4 foamRun -parallel > log &

3.4.4 Distributing data across several disks
Data files may need to be distributed if, for example, if only local disks are used in order to
improve performance. In this case, the user may find that the root path to the case directory
may differ between machines. The paths must then be specified in the decomposeParDict
dictionary using distributed and roots keywords. The distributed entry should read

distributed yes;

and the roots entry is a list of root paths, <root0>, <root1>, . . . , for each node

roots
<nRoots>
(

"<root0>"
"<root1>"
...

);

where <nRoots> is the number of roots.
Each of the processorN directories should be placed in the case directory at each of

the root paths specified in the decomposeParDict dictionary. The system directory and files

within the constant directory must also be present in each case directory. Note: the files in
the constant directory are needed, but the polyMesh directory is not.
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3.4.5 Post-processing parallel processed cases
When post-processing cases that have been run in parallel the user has two options:

• reconstruction of the mesh and field data to recreate the complete domain and fields,
which can be post-processed as normal;

• post-processing each segment of decomposed domain individually.

After a case has been run in parallel, it can be reconstructed for post-processing. The
case is reconstructed by merging the sets of time directories from each processorN directory
into a single set of time directories. The reconstructPar utility performs such a reconstruction
by executing the command:

reconstructPar

The user may post-process decomposed cases using the paraFoam post-processor, de-
scribed in section 7.1. The whole simulation can be post-processed by reconstructing the
case or alternatively it is possible to post-process a segment of the decomposed domain
individually by simply treating the individual processor directory as a case in its own right.

3.5 Solver modules
From OpenFOAM version 11, application solvers, e.g. simpleFoam have been largely replaced
by the generic foamRun solver which loads a solver module, e.g. incompressibleFluid that
defines the flow solution. Solver modules are located in the $FOAM_MODULES directory.
The current solver modules distributed with OpenFOAM are listed below.

3.5.1 Single-phase modules
fluid Solver module for steady or transient turbulent flow of compressible fluids with heat-

transfer for HVAC and similar applications, with optional mesh motion and change.

incompressibleDenseParticleFluid Solver module for transient flow of incompressible isother-
mal fluids coupled with particle clouds including the effect of the volume fraction of
particles on the continuous phase, with optional mesh motion and change.

incompressibleFluid Solver module for steady or transient turbulent flow of incompressible
isothermal fluids with optional mesh motion and change.

multicomponentFluid Solver module for steady or transient turbulent flow of compressible
multicomponent fluids with optional mesh motion and change.

shockFluid Solver module for density-based solution of compressible flow

XiFluid Solver module for compressible premixed/partially-premixed combustion with tur-
bulence modelling.
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3.5.2 Multiphase/VoF flow modules
compressibleMultiphaseVoF Solver module for the solution of multiple compressible, isother-

mal immiscible fluids using a VOF (volume of fluid) phase-fraction based interface
capturing approach, with optional mesh motion and mesh topology changes including
adaptive re-meshing.

compressibleVoF Solver module for for 2 compressible, non-isothermal immiscible fluids us-
ing a VOF (volume of fluid) phase-fraction based interface capturing approach, with
optional mesh motion and mesh topology changes including adaptive re-meshing.

incompressibleDriftFlux Solver module for 2 incompressible fluids using the mixture approach
with the drift-flux approximation for relative motion of the phases, with optional mesh
motion and mesh topology changes including adaptive re-meshing.

incompressibleMultiphaseVoF Solver module for the solution of multiple incompressible, iso-
thermal immiscible fluids using a VOF (volume of fluid) phase-fraction based interface
capturing approach, with optional mesh motion and mesh topology changes including
adaptive re-meshing.

incompressibleVoF Solver module for for 2 incompressible, isothermal immiscible fluids us-
ing a VOF (volume of fluid) phase-fraction based interface capturing approach, with
optional mesh motion and mesh topology changes including adaptive re-meshing.

isothermalFluid Solver module for steady or transient turbulent flow of compressible isother-
mal fluids with optional mesh motion and change.

multiphaseEuler Solver module for a system of any number of compressible fluid phases with
a common pressure, but otherwise separate properties. The type of phase model is run
time selectable and can optionally represent multiple species and in-phase reactions.
The phase system is also run time selectable and can optionally represent different
types of momentum, heat and mass transfer.

3.5.3 Solid modules
solid Solver module for thermal transport in solid domains and regions for conjugate heat

transfer, HVAC and similar applications, with optional mesh motion and mesh topology
changes.

solidDisplacement Solver module for steady or transient segregated finite-volume solution of
linear-elastic, small-strain deformation of a solid body, with optional thermal diffusion
and thermal stresses.

3.5.4 Film modules
isothermalFilm Solver module for flow of compressible isothermal liquid films

film Solver module for flow of compressible liquid films
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3.5.5 Utility modules
functions Solver module to execute the functionObjects for a specified

movingMesh Solver module to move the mesh.

3.5.6 Base classes for solver modules
fluidSolver Base solver module for fluid solvers.

twoPhaseSolver Solver module base-class for for 2 immiscible fluids, with optional mesh
motion and mesh topology changes including adaptive re-meshing.

twoPhaseVoFSolver Solver module base-class for for 2 immiscible fluids using a VOF (volume
of fluid) phase-fraction based interface capturing approach, with optional mesh motion
and mesh topology changes including adaptive re-meshing.

VoFSolver Base solver module base-class for the solution of immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach, with optional mesh
motion and mesh topology changes including adaptive re-meshing.

multiphaseVoFSolver Base solver module for the solution of multiple immiscible fluids using a
VOF (volume of fluid) phase-fraction based interface capturing approach, with optional
mesh motion and mesh topology changes including adaptive re-meshing.

3.6 Standard solvers
With the introduction of solver modules in OpenFOAM v11, the number of solver appli-
cations has much reduced. The applications which are relevant, including foamRun and
foamMultiRun, are located in the $FOAM_SOLVERS directory, reached quickly by typing
sol at the command line. These solver applications are listed in the following section.

There are also some legacy solver applications, which either have not been replaced yet
by new solver modules or are included for teaching purposes. They are provided in the
$FOAM_APP/legacy directory are listed in the subsequent section below.

3.6.1 Main solver applications
foamRun Loads and executes an OpenFOAM solver module either specified by the optional

solver entry in the controlDict or as a command-line argument.

foamMultiRun Loads and executes an OpenFOAM solver modules for each region of a mul-
tiregion simulation e.g. for conjugate heat transfer.

boundaryFoam Steady-state solver for incompressible, 1D turbulent flow, typically to gener-
ate boundary layer conditions at an inlet, for use in a simulation.

chemFoam Solver for chemistry problems, designed for use on single cell cases to provide
comparison against other chemistry solvers, that uses a single cell mesh, and fields
created from the initial conditions.

OpenFOAM-13



3.7 Standard utilities U-91

potentialFoam Potential flow solver which solves for the velocity potential, to calculate the
flux-field, from which the velocity field is obtained by reconstructing the flux.

3.6.2 Legacy solver applications
electrostaticFoam Solver for electrostatics.

magneticFoam Solver for the magnetic field generated by permanent magnets.

mhdFoam Solver for magnetohydrodynamics (MHD): incompressible, laminar flow of a con-
ducting fluid under the influence of a magnetic field.

laplacianFoam Solves a simple Laplace equation, e.g. for thermal diffusion in a solid.

financialFoam Solves the Black-Scholes equation to price commodities.

dsmcFoam Direct simulation Monte Carlo (DSMC) solver for, transient, multi-species flows.

mdEquilibrationFoam Solver to equilibrate and/or precondition molecular dynamics systems.

mdFoam Molecular dynamics solver for fluid dynamics.

adjointShapeOptimizationFoam Steady-state solver for incompressible, turbulent flow of non-
Newtonian fluids with optimisation of duct shape by applying "blockage" in regions
causing pressure loss as estimated using an adjoint formulation.

icoFoam Transient solver for incompressible, laminar flow of Newtonian fluids.

shallowWaterFoam Transient solver for inviscid shallow-water equations with rotation.

porousSimpleFoam Steady-state solver for incompressible, turbulent flow with implicit or
explicit porosity treatment and support for multiple reference frames (MRF).

rhoPorousSimpleFoam Steady-state solver for turbulent flow of compressible fluids, with im-
plicit or explicit porosity treatment and optional sources.

PDRFoam Solver for compressible premixed/partially-premixed combustion with turbulence
modelling.

3.7 Standard utilities
The utilities with the OpenFOAM distribution are in the $FOAM_UTILITIES directory. The
names are reasonably descriptive, e.g. ideasToFoam converts mesh data from the format writ-
ten by I-DEAS to the OpenFOAM format. The descriptions of current utilities distributed
with OpenFOAM are given in the following sections.
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3.7.1 Pre-processing
applyBoundaryLayer Apply a simplified boundary-layer model to the velocity and turbulence

fields based on the 1/7th power-law.

boxTurb Makes a box of turbulence which conforms to a given energy spectrum and is
divergence free.

changeDictionary Utility to change dictionary entries, e.g. can be used to change the patch
type in the field and polyMesh/boundary files.

createExternalCoupledPatchGeometry Application to generate the patch geometry (points and
faces) for use with the externalCoupled boundary condition.

dsmcInitialise Initialise a case for dsmcFoam by reading the initialisation dictionary system/-
dsmcInitialise.

engineSwirl Generates a swirling flow for engine calculations.

faceAgglomerate Agglomerate boundary faces using the pairPatchAgglomeration algorithm.
It writes a map from the fine to coarse grid.

foamSetupCHT Sets up a multi-region case using template files for material properties, field
and system files.

mapFields Maps volume fields from one mesh to another, reading and interpolating all fields
present in the time directory of both cases.

mapFieldsPar Maps volume fields from one mesh to another, reading and interpolating all
fields present in the time directory of both cases. Parallel and non-parallel cases are
handled without the need to reconstruct them first.

mdInitialise Initialises fields for a molecular dynamics (MD) simulation.

setAtmBoundaryLayer Applies atmospheric boundary layer models to the entire domain for
case initialisation.

setFields Set values on a selected set of cells/patchfaces through a dictionary.

setWaves Applies wave models to the entire domain for case initialisation using level sets for
second-order accuracy.

snappyHexMeshConfig Preconfigures blockMeshDict, surfaceFeaturesDict and snappyHexMesh-
Dict files based on the case surface geometry files.

viewFactorsGen View factors are calculated based on a face agglomeration array (finalAgg-
lom generated by faceAgglomerate utility).
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3.7.2 Mesh generation
blockMesh A multi-block mesh generator.

extrudeMesh Extrude mesh from existing patch (by default outwards facing normals; optional
flips faces) or from patch read from file.

extrude2DMesh Takes 2D mesh (all faces 2 points only, no front and back faces) and creates
a 3D mesh by extruding with specified thickness.

extrudeToRegionMesh Extrude faceZones (internal or boundary faces) or faceSets (boun-
dary faces only) into a separate mesh (as a different region).

snappyHexMesh Automatic split hex mesher. Refines and snaps to surface.

zeroDimensionalMesh Creates a zero-dimensional mesh.

3.7.3 Mesh conversion
ansysToFoam Converts an ANSYS input mesh file, exported from I-DEAS, to OpenFOAM

format.

ccm26ToFoam Reads CCM files as written by Prostar/ccm using ccm 2.6

cfx4ToFoam Converts a CFX 4 mesh to OpenFOAM format.

datToFoam Reads in a datToFoam mesh file and outputs a points file. Used in conjunction
with blockMesh.

fluent3DMeshToFoam Converts a Fluent mesh to OpenFOAM format.

fluentMeshToFoam Converts a Fluent mesh to OpenFOAM format including multiple region
and region boundary handling.

foamMeshToFluent Writes out the OpenFOAM mesh in Fluent mesh format.

foamToStarMesh Reads an OpenFOAM mesh and writes a pro-STAR (v4) bnd/cel/vrt for-
mat.

foamToSurface Reads an OpenFOAM mesh and writes the boundaries in a surface format.

gambitToFoam Converts a GAMBIT mesh to OpenFOAM format.

gmshToFoam Reads .msh file as written by Gmsh.

ideasUnvToFoam I-Deas unv format mesh conversion.

kivaToFoam Converts a KIVA3v grid to OpenFOAM format.

mshToFoam Converts .msh file generated by the Adventure system.

netgenNeutralToFoam Converts neutral file format as written by Netgen v4.4.
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plot3dToFoam Plot3d mesh (ascii/formatted format) converter.

sammToFoam Converts a Star-CD (v3) SAMM mesh to OpenFOAM format.

star3ToFoam Converts a Star-CD (v3) pro-STAR mesh into OpenFOAM format.

star4ToFoam Converts a Star-CD (v4) pro-STAR mesh into OpenFOAM format.

tetgenToFoam Converts .ele and .node and .face files, written by tetgen.

vtkUnstructuredToFoam Converts ascii .vtk (legacy format) file generated by vtk/paraview.

writeMeshObj For mesh debugging, writes mesh as three separate OBJ files for visualisation.

3.7.4 Mesh manipulation
autoPatch Divides external faces into patches based on (user supplied) feature angle.

checkMesh Checks validity of a mesh.

createBaffles Makes internal faces into boundary faces. Does not duplicate points.

createNonConformalCouples Utility to create non-conformal couples between non-coupled
patches.

createPatch Utility to create patches out of selected boundary faces. Faces come either from
existing patches or from a faceSet.

createZones Utility to generate zones by executing configured zoneGenerators.

deformedGeom Deforms a polyMesh using a displacement field U and a scaling factor supplied
as an argument.

flattenMesh Flattens the front and back planes of a 2D cartesian mesh.

insideCells Picks up cells with cell centre ’inside’ of surface. Requires surface to be closed
and singly connected.

mergeBaffles Detects faces that share points (baffles) and merges them into internal faces.

mergeMeshes Merges two meshes.

mirrorMesh Mirrors a mesh around a given plane.

objToVTK Read obj line (not surface!) file and convert into vtk.

polyDualMesh Calculates the dual of a polyMesh. Adheres to all the feature and patch edges.

refineMesh Utility to refine cells in multiple directions.

renumberMesh Renumbers the cell list in order to reduce the bandwidth, reading and renum-
bering all fields from all the time directories.
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reorderPatches Utility to reorder the patches of a case

singleCellMesh Reads all fields and maps them to a mesh with all internal faces removed
(singleCellFvMesh) which gets written to region singleCell.

splitBaffles Detects faces that share points (baffles) and duplicates the points to separate
them.

splitMeshRegions Splits mesh into multiple regions.

stitchMesh Stitches a mesh.

subsetMesh Selects a section of mesh based on a cellSet.

topoSet Operates on cellSets/faceSets/pointSets through a dictionary.

transformPoints Transforms the mesh points in the polyMesh directory according to the
translate, rotate and scale options.

zipUpMesh Reads in a mesh with hanging vertices and zips up the cells to guarantee that
all polyhedral cells of valid shape are closed.

3.7.5 Other mesh tools
collapseEdges Collapses short edges and combines edges that are in line.

combinePatchFaces Checks for multiple patch faces on same cell and combines them. Mul-
tiple patch faces can result from e.g. removal of refined neighbouring cells, leaving 4
exposed faces with same owner.

refinementLevel Tries to figure out what the refinement level is on refined Cartesian meshes.
Run BEFORE snapping.

refineWallLayer Utility to refine cells next to patches.

removeFaces Utility to remove faces (combines cells on both sides).

selectCells Select cells in relation to surface.

splitCells Utility to split cells with flat faces.

3.7.6 Post-processing
engineCompRatio Calculate the geometric compression ratio. Note that if you have valves

and/or extra volumes it will not work, since it calculates the volume at BDC and TCD.

foamPostProcess Execute the set of functionObjects specified in the selected dictionary
(which defaults to system/controlDict) or on the command-line for the selected set of
times on the selected set of fields.

noise Utility to perform noise analysis of pressure data using the noiseFFT library.

OpenFOAM-13



U-96 Applications and libraries

pdfPlot Generates a graph of a probability distribution function.

temporalInterpolate Interpolate fields between time-steps e.g. for animation.

3.7.7 Post-processing data converters
foamDataToFluent Translates OpenFOAM data to Fluent format.

foamToEnsight Translates OpenFOAM data to EnSight format.

foamToEnsightParts Translates OpenFOAM data to Ensight format. An Ensight part is
created for each cellZone and patch.

foamToGMV Translates foam output to GMV readable files.

foamToTetDualMesh Converts polyMesh results to tetDualMesh.

foamToVTK Legacy VTK file format writer.

smapToFoam Translates a STAR-CD SMAP data file into OpenFOAM field format.

3.7.8 Lagrangian post-processing
particleTracks Generates a VTK file of particle tracks for cases that were computed using a

tracked-parcel-type cloud.

steadyParticleTracks Generates a VTK file of particle tracks for cases that were computed
using a steady-state cloud NOTE: case must be re-constructed (if running in parallel)
before use

3.7.9 Surface mesh (e.g. OBJ/STL) tools
surfaceAdd Add two surfaces. Does geometric merge on points. Does not check for overlap-

ping/intersecting triangles.

surfaceAutoPatch Patches surface according to feature angle. Like autoPatch.

surfaceBooleanFeatures Generates the extendedFeatureEdgeMesh for the interface between a
boolean operation on two surfaces. Assumes that the orientation of the surfaces is
correct.

surfaceCheck Checks geometric and topological quality of a surface.

surfaceClean Removes baffles - collapses small edges, removing triangles. - converts sliver
triangles into split edges by projecting point onto base of triangle.

surfaceCoarsen Surface coarsening using bunnylod

surfaceConvert Converts from one surface mesh format to another.

surfaceFeatureConvert Convert between edgeMesh formats.
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surfaceFeatures Identifies features in a surface geometry and writes them to file, based on
control parameters specified by the user.

surfaceFind Finds nearest face and vertex.

surfaceHookUp Find close open edges and stitches the surface along them

surfaceInertia Calculates the inertia tensor, principal axes and moments of a command line
specified triSurface. Inertia can either be of the solid body or of a thin shell.

surfaceLambdaMuSmooth Smooths a surface using lambda/mu smoothing.

surfaceMeshConvert Converts between surface formats with optional scaling or transforma-
tions (rotate/translate) on a coordinateSystem.

surfaceMeshExport Export from surfMesh to various third-party surface formats with op-
tional scaling or transformations (rotate/translate) on a coordinateSystem.

surfaceMeshImport Import from various third-party surface formats into surfMesh with op-
tional scaling or transformations (rotate/translate) on a coordinateSystem.

surfaceMeshInfo Miscellaneous information about surface meshes.

surfaceMeshTriangulate Extracts surface from a polyMesh. Depending on output surface
format triangulates faces.

surfaceOrient Set normal consistent with respect to a user provided ‘outside’ point. If the
-inside option is used the point is considered inside.

surfacePointMerge Merges points on surface if they are within absolute distance. Since ab-
solute distance use with care!

surfaceRedistributePar (Re)distribution of triSurface. Either takes an non-decomposed sur-
face or an already decomposed surface and redistributes it so that each processor has
all triangles that overlap its mesh.

surfaceRefineRedGreen Refine by splitting all three edges of triangle (‘red’ refinement). Neigh-
bouring triangles which are not marked for refinement get split in half (‘green’ refine-
ment).

surfaceSplitByPatch Writes regions of triSurface to separate files.

surfaceSplitByTopology Strips any baffle parts of a surface. A baffle region is one which is
reached by walking from an open edge, and stopping when a multiply connected edge
is reached.

surfaceSplitNonManifolds Takes multiply connected surface and tries to split surface at mul-
tiply connected edges by duplicating points. Introduces concept of - borderEdge.
Edge with 4 faces connected to it. - borderPoint. Point connected to exactly 2
borderEdges. - borderLine. Connected list of borderEdges.
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surfaceSubset A surface analysis tool which sub-sets the triSurface to choose only a part
of interest. Based on subsetMesh.

surfaceToPatch Reads surface and applies surface regioning to a mesh. Uses boundaryMesh
to do the hard work.

surfaceTransformPoints Transform (scale/rotate) a surface. Like transformPoints but for
surfaces.

3.7.10 Parallel processing
decomposePar Automatically decomposes a mesh and fields of a case for parallel execution

of OpenFOAM.

reconstructPar Reconstructs fields of a case that is decomposed for parallel execution of
OpenFOAM.

redistributePar Redistributes existing decomposed mesh and fields according to the current
settings in the decomposeParDict file.

3.7.11 Thermophysical-related utilities
adiabaticFlameT Calculates the adiabatic flame temperature for a given fuel over a range of

unburnt temperatures and equivalence ratios.

chemkinToFoam Converts CHEMKINIII thermodynamics and reaction data files into Open-
FOAM format.

equilibriumCO Calculates the equilibrium level of carbon monoxide.

equilibriumFlameT Calculates the equilibrium flame temperature for a given fuel and pres-
sure for a range of unburnt gas temperatures and equivalence ratios; the effects of
dissociation on O2, H2O and CO2 are included.

mixtureAdiabaticFlameT Calculates the adiabatic flame temperature for a given mixture at
a given temperature.

3.7.12 Miscellaneous utilities
foamDictionary Interrogates and manipulates dictionaries.

foamFormatConvert Converts all IOobjects associated with a case into the format specified
in the controlDict.

foamListTimes List times using timeSelector.

foamToC Run-time selection table of contents printing and interrogation.

patchSummary Writes fields and boundary condition info for each patch at each requested
time instance.
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Chapter 4

OpenFOAM cases

This chapter deals with the file structure and organisation of OpenFOAM cases. Normally,
a user would assign a name to a case, e.g. the tutorial case of aerodynamics of a motorbike
is simply named motorBike. This name becomes the name of a directory in which all the
case files and sub-directories are stored.

When running a simulation, a case directory can be located anywhere on a user’s filing
system. However, we recommend putting cases within a run subdirectory of the user’s filing
system, i.e.$HOME/OpenFOAM/${USER}-13 as described at the beginning of chapter 2.
The $FOAM_RUN environment variable is set to $HOME/OpenFOAM/${USER}-13/run by
default and the user can quickly move to that directory by executing a preset alias, run, at
the command line.

The tutorial cases that accompany the OpenFOAM distribution provide useful examples
of the case directory structures. The tutorials are located in the $FOAM_TUTORIALS di-
rectory, reached quickly by executing the tut alias at the command line. Users can view
tutorial examples at their leisure while reading this chapter.

4.1 File structure of OpenFOAM cases
The basic directory structure of an OpenFOAM case, containing the minimum set of files
required to run an application, is shown in Figure 4.1 and described as follows:

constant directory that contains a full description of the case mesh in a subdirectory poly-
Mesh and files specifying properties and models for the application concerned, e.g.

physicalProperties and momentumTransport.

system directory for setting parameters associated with the solution procedure itself. It
contains at least the following three files: controlDict where run control parameters
are set including start/end time, time step and parameters for data output; fvSchemes
where discretisation schemes used in the solution are selected; and, fvSolution where
the equation solvers, tolerances and other algorithm controls are set for the run.

‘time’ directories containing individual files of data for particular fields, e.g. velocity and
pressure. The data can be: either, initial values and boundary conditions that the user
must specify to define the problem; or, results written to file by OpenFOAM. Fields
must always be initialised, even when the solution does not strictly require it, as in
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<case>

system

controlDict
fvSchemes

polyMesh

points

. . . Properties

constant
fvSolution

see section 4.4
see section 4.5
see section 4.6

see section 5.2
see chapter 8

boundary
time directories see section 4.2.9

faces
owner
neighbour

Figure 4.1: Case directory structure

steady-state problems. The name of each time directory is based on the simulated time
at which the data is written and is described fully in section 4.4. Since we usually start
our simulations at time t = 0, the initial conditions are usually stored in a directory
named 0. For example, in the motorBike tutorial, the velocity field U and pressure
field p are initialised from files 0/U and 0/p respectively.

4.2 Basic input/output file format
OpenFOAM needs to read a range of data structures such as strings, words, scalars, vectors,
tensors, lists and fields. The input/output (I/O) format of files is extremely flexible, following
a consistent set of rules that make the files easy to interpret. The OpenFOAM file format is
described in the following sections.

4.2.1 General syntax rules
The format resembles C++ code, following the general principles below.

• Files have free form, with no particular meaning assigned to any column and no need
to indicate continuation across lines.

• Lines have no particular meaning except to a // comment delimiter which makes
OpenFOAM ignore any text that follows it until the end of line.

• A comment over multiple lines is done by enclosing the text between /* and */ delim-
iters.
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4.2.2 Dictionaries
OpenFOAM mainly uses dictionaries to specify data, in which data entries are retrieved
by means of keywords. Each keyword entry follows the general format, beginning with the
keyword and ending in semi-colon (;).

<keyword> <dataEntry1> ... <dataEntryN>;

Many entries include only a single data entry as shown below.

<keyword> <dataEntry>;

Most data files, e.g. controlDict, are themselves dictionaries since they contain a series of
keyword entries. Any dictionary can contain one or more sub-dictionaries, usually denoted
by a dictionary name and its keyword entries contained within curly braces {} as follows.

<dictionaryName>
{

... keyword entries ...
}

(Sub-)dictionaries can be nested within others, as shown in the following example. The
extract, from an fvSolution dictionary file, containing two dictionaries, solvers and PIMPLE.
The solvers dictionary contains nested sub-dictionary for different matrix equations based
on different solution variables, e.g. p, U and k (with some entries using regular expressions
described in section 4.2.13).

16
17 solvers
18 {
19 p
20 {
21 solver GAMG;
22 tolerance 1e-7;
23 relTol 0.01;
24
25 smoother DICGaussSeidel;
26
27 }
28
29 pFinal
30 {
31 $p;
32 relTol 0;
33 }
34
35 "(U|k|epsilon)"
36 {
37 solver smoothSolver;
38 smoother symGaussSeidel;
39 tolerance 1e-05;
40 relTol 0.1;
41 }
42
43 "(U|k|epsilon)Final"
44 {
45 $U;
46 relTol 0;
47 }
48 }
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49
50 PIMPLE
51 {
52 nNonOrthogonalCorrectors 0;
53 nCorrectors 2;
54 }
55
56
57 // ************************************************************************* //

4.2.3 The data file header
All data files that are read and written by OpenFOAM begin with a dictionary named
FoamFile containing a standard set of keyword entries, listed below:

• version: I/O format version, optional, defaults to 2.0

• format: data format, ascii or binary

• class: class relating to the data, either dictionary or a field, e.g. volVectorField

• object: filename, e.g. controlDict (mandatory, but not used)

• location: path to the file (optional)

A example header for a controlDict file is shown below.

FoamFile
{

format ascii;
class dictionary;
location "system";
object controlDict;

}

4.2.4 Lists
OpenFOAM applications contain lists, e.g. a list of vertex coordinates for a mesh description.
Lists are commonly found in I/O and have a format of their own in which the entries are
contained within round braces ( ). When a user specifies a list in an input file, e.g. the
vertices list in a blockMeshDict file, it just includes the vertices keyword and the data in
( ), e.g.

vertices
(

... entries ...
);

When OpenFOAM writes out a list, it invariably prefixes it with the number of elements
in the list. For example the points file for the mesh in the pizDailySteady case contains the
following (abbreviated) list, where 25012 denotes the number of vertex points in the mesh.
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25012
(

(-0.0206 0 -0.0005)
(-0.01901716308 0 -0.0005)
... entries ...

);

In some cases, when OpenFOAM writes out a list, it further prefixes it with the class
name of the list. For example, the inGroups entry in a boundary file of a mesh contains a list
where each group name is a word. The entry for the lowerWall patch from the pizDailySteady
case is shown below, indicating the List<word> class with a single (1) element.

lowerWall
{

type wall;
inGroups List<word> 1(wall); // Note!
nFaces 250;
startFace 24480;

}

4.2.5 Scalars, vectors and tensors
A scalar is a single number represented as such in a data file. A vector contains three values,
expressed using the simple List format so that the vector (1.0, 1.1, 1.2) is written:

(1.0 1.1 1.2)

In OpenFOAM, a tensor contains nine elements, such that the identity tensor can be written:

( 1 0 0 0 1 0 0 0 1 )

The user can write the entry over multiple lines to give the “look” of a tensor as a 3 × 3
entity.

(
1 0 0
0 1 0
0 0 1

)

4.2.6 Dimensional units
In continuum mechanics, properties are represented in some chosen units, e.g. mass in kilo-
grams (kg), volume in cubic metres (m3), pressure in Pascals (kgm−1 s−2). Algebraic op-
erations must be performed on these properties using consistent units of measurement; in
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particular, addition, subtraction and equality are only physically meaningful for properties
of the same dimensional units. As a safeguard against implementing a meaningless oper-
ation, OpenFOAM attaches dimensions to field data and physical properties and performs
dimension checking on any operation.

Dimensions are described by the dimensionSet class which has its own unique I/O syntax
using square brackets, e.g.

[0 2 -1 0 0 0 0]

where each of the values corresponds to the power of each of the base units of measurement
listed in sequence below:

1. mass, e.g. kilogram (kg), pound-mass (lbm);

2. length, e.g. metre (m), foot (ft);

3. time, e.g. second (s);

4. temperature, e.g. Kelvin (K), degree Rankine (◦R);

5. quantity, e.g. mole (mol);

6. current, e.g. ampere (A);

7. luminous intensity, e.g. candela (cd).

The list presents the base dimensional units used in the Système International (SI) and the
United States Customary System (USCS) . OpenFOAM v12 also allows the dimensional
units to be specified by name, starting with the base units, named mass, length, time,
temperature, moles, current, and luminousIntensity. Dimensional units can be ex-
pressed using these names, rather than the array of indices, e.g. dimensions of length can be
written

[length]

instead of [0 1 0 0 0 0 0]. The example, [0 2 -1 0 0 0 0], can be written as

[sqr(length)/time]

where sqr(length) denotes units of length*length. There are also names for “composite”
dimensional units that are commonly used. For example, area represents sqr(length), so
the previous example could be written

[area/time]

In fact, these dimensions are those of kinematic viscosity, for which a named dimension is
predefined by

[kinematicViscosity]
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Dimensions do not themselves suggest any particular system of units, e.g. SI or USCS.
OpenFOAM can effectively operate in any unit system, the only requirement being that the
input data is correct for the chosen set of units. Input data may include physical constants,
e.g. the Universal Gas Constant R, whose values must be correct for that specific unit system.

OpenFOAM defines the constants in the DimensionedConstant sub-dictionary of main
controlDict file of the OpenFOAM installation ($WM_PROJECT_DIR/etc/controlDict). By
default the constants are set in SI units. Those wishing to use the USCS or any other system
of units should modify these constants to their chosen set of units accordingly, as described
in section 4.3.

4.2.7 Units and unit conversion
OpenFOAM v12 also allows users to accompany single-valued input data with units. When
the data is read with its units, it is converted into the base unit system using an appropri-
ate factor. Units are defined in the UnitConversions sub-dictionary of main controlDict file,
including a long list of units and conversions to the SI system.

The defined SI units begin with base units, kg, m, s, K, kmol, A and Cd, with a conversion
factor of 1, corresponding to the 7 base dimensional units. There are numerous derived units,
e.g. [min] for minute which has a base unit of s and a conversion factor of 60. Another
example with a slightly more complex definition is [cal] for calorie, with a conversion to
[J], with a factor of 4.184. The unit [J] denotes joule, which itself is [N m], where newton
[N] is [kg m s^-2].

Units are added to single-valued parameters after the data value, as shown below in a
snippet of an input file with a volumetric flow rate specified in litres per second.

inlet
{

type flowRateInletVelocity;
volumetricFlowRate 0.1 [l/s];
...

OpenFOAM includes the foamUnit script, described in section 4.2.7, which lists available
named units and dimensions and provided details about them.

4.2.8 Dimensioned types
Physical properties are typically specified with their associated dimensions. They are of-
ten described by the dimensioned class which includes three components: a word name; a
dimensionSet and a value (scalar, vector, etc.).

The I/O for a dimensioned entry can include all three components, using indexed or
named dimensions e.g.

rho rho [1 -3 0 0 0 0 0] 1000;
nu nu [kinematicViscosity] 1e-5;
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Note that the first nu is the keyword; the second nu is the word name stored in class word;
the next entry is the dimensionSet and the final entry is the scalar value.

Usually, the word and dimensionSet are specified in the code with default values, so can
be omitted from the I/O as shown below.

rho 1000;
nu 1e-5;

As described in the previous section, a value can be followed by a unit from which the value
is converted to base units. In the example for kinematic viscosity nu, the value could be
specified in centistokes by

nu 10 [cSt];

4.2.9 Fields
Field files, e.g. U and p, that are read from and written into the time directories, possess
their own customised I/O with the following three key entries.

• dimensions: the dimensions of the field, e.g. [1 -1 -2 0 0 0 0] or [pressure].

• internalField: values within the internal field, e.g. within each cell of a mesh.

• boundaryField: condition (type) and data for each patch of the mesh boundary.

The internalField can be specified in two ways. First, when the user edits a field file to
initialise it, they generally specify a single value across all elements, i.e. the cells (or faces,
points, depending on the type of field) of the mesh. A single value of 0 is denoted by the
uniform keyword as shown below.

internalField uniform 0;

A uniform field can also be initialised using a set of units, e.g. for a pressure of 1 bar:

internalField uniform 1 [bar];

When results are written out, fields cannot generally be represented by a single value. The
output uses the nonuniform keyword, followed by a suitable list of values. The abbreviated
example below is from an output p file for a mesh of 12225 cells.

internalField nonuniform List<scalar>
12225
(
-4.92806
-5.42676
...
);
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The boundaryField is a dictionary containing a set of entries corresponding to each
patch listed in the boundary file in the polyMesh directory. Each entry is a sub-dictionary
containing a list of keyword entries. The mandatory entry, type, describes the patch field
condition specified for the field. The remaining entries correspond to the type of patch field
condition selected and can typically include field data specifying initial conditions on patch
faces. A selection of patch field conditions available in OpenFOAM are listed in section 6.2,
section 6.3 and section 6.4, with a description and the data that must be specified with it.
Example field dictionary entries for velocity U are shown below:

16 dimensions [0 1 -1 0 0 0 0];
17
18 internalField uniform (0 0 0);
19
20 boundaryField
21 {
22 inlet
23 {
24 type fixedValue;
25 value uniform (10 0 0);
26 }
27
28 outlet
29 {
30 type zeroGradient;
31 }
32
33 upperWall
34 {
35 type noSlip;
36 }
37
38 lowerWall
39 {
40 type noSlip;
41 }
42
43 frontAndBack
44 {
45 type empty;
46 }
47 }
48
49 // ************************************************************************* //

4.2.10 Macro expansion
The configuration of case files can benefit from a macro syntax which uses the dollar ($)
symbol in front of a keyword to expand the data associated with the keyword. For example
the value set for keyword a below, 10, is expanded in the following line, so that the value of
b is also 10.

a 10;
b $a;

Variables can be accessed within different levels of sub-dictionaries, or scope. Scoping is
performed using a ‘/’ (slash) syntax, illustrated by the following example, where b is set to
the value of a, specified in a sub-dictionary called subdict.

subdictA
{
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a 20;
}
b $subdictA/a;

There are further syntax rules for macro expansions:

• to traverse up one level of sub-dictionary, use the ‘..’ (double-dot) prefix, see below;

• to traverse up two levels use ‘../..’ prefix, etc.;

• to traverse to the top level dictionary use the ‘!’ (exclamation mark) prefix (most
useful), see below;

• to traverse into a separate file named otherFile, use ‘otherFile!’, see below;

• for multiple levels of macro substitution, each specified with the ‘$’ dollar syntax, ‘{}’
brackets are required to protect the expansion, see below.

When accessing parameters from another file, the $FOAM_CASE environment variable is
useful to specify the path to the file as described in section 4.2.12 and illustrated below.

a 10;
b a;
c ${$b}; // returns 10, since $b returns "a", and $a returns 10

subdictA
{

a 20;
}

subdictB
{

// double-dot takes scope up 1 level, then into "subdictA" => 20
b $../subdictA/a;

subsubdict
{

// exclamation mark takes scope to top level => 10
b $!a;

// "a" from another file named "otherFile"
c $otherFile!a;

// "a" from another file "otherFile" in the case directory
d ${${FOAM_CASE}/otherFile!a};

}
}
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4.2.11 Including files
Directives are commands that begin with the hash (#) symbol which provide further flexibility
when configuring case files. There is a set of directive commands for reading a data file from
within another data file. If a case requires a single value of pressure of 100 kPa, used in
different input files, we could create a file, e.g. named initialConditions, which contains the
following entry:

pressure 1e+05;

In order to use this pressure for internal and initial boundary fields, the user could simply
include the initialConditions file using the #include directive, then use a macro expansion
on the pressure keyword, as follows.

#include "initialConditions"
internalField uniform $pressure;
boundaryField
{

patch1
{

type fixedValue;
value $internalField;

}
}

This example works if the included file is in the same directory as the file that includes it.
Otherwise, more generally the path to the file is required, e.g. if initialConditions is in the
constant directory:

#include "$FOAM_CASE/constant/initialConditions"

Here $FOAM_CASE represents is the path of the case directory as described in the following
section. The following special forms of the #include directive also exist.

• #includeIfPresent: reads a file if it exists.

• #includeEtc: reads a file with the $FOAM_ETC directory as the starting path.

• #includeFunc: reads file containing a single functionObject configuration, first search-
ing the case system directory, followed by the $FOAM_ETC directory.

• #includeModel: reads a file containing a single fvModel configuration, first searching
the case constant directory, followed by the $FOAM_ETC directory.

• #includeConstraint: reads a file containing a single fvConstraint configuration, first
searching the case system directory, followed by the $FOAM_ETC directory.

Keyword entries can also be removed with the directive:

#remove <keywordEntry>

where <keywordEntry> can be either a single keyword or a regular expression.
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4.2.12 Environment variables
Environment variables can be used in input files. For example, the $FOAM_RUN environ-
ment variable can be used to identify the run directory, as described in the introduction to
Chapter 2. This could be used to include a file, e.g. by

#include "$FOAM_RUN/pitzDailySteady/0/U"

In addition to environment variables like $FOAM_RUN, set within the operating system,
a number of “internal” environment variables are recognised, including the following.

• $FOAM_CASE: the path and directory of the running case.

• $FOAM_CASENAME: the directory name of the running case.

• $FOAM_APPLICATION: the name of the running application.

4.2.13 Regular expressions
As discussed, data is looked up from files using keywords. If a particular keyword does not
exist, the I/O system will try to match the keyword with any POSIX regular expression,
specified inside double-quotations ("...") in the input file.

In some cases, when the I/O system searches for a keyword in a case file, a can be used
to match the keyword

When running an application, data is initialised by looking up keywords from dictionaries.
The user can either provide an entry with a keyword that directly matches the one being
looked up, or can provide a that matches the keyword, specified inside double-quotations
("...").

Regular expressions have an extensive syntax for various matches of text patterns but
in OpenFOAM input files there are only two expressions that are generally used. Firstly,
‘.’ denoting “any character”, and ‘*’ denoting “repeated any number of times, including 0
times” is often used in combination to match “any characters”. For example, to specify a
noSlip boundary condition for any patch whose name ends Wall. . . , the user could specify
in the boundaryField for U:

".*Wall"
{

type noSlip;
}

The other common regular expression uses () to group expressions. For example, to a noSlip
boundary condition on two wall patches named upper and lower, the user could specify:

"(upper|lower)"
{

type noSlip;
}
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4.2.14 Keyword ordering
The order in which keywords are listed does not matter, except when the same keyword is

specified multiple times. Where the same keyword is duplicated, the last instance is used. The
most common example of a duplicate keyword occurs when a keyword is included from the
file or expanded from a macro, and then overridden. The example below demonstrates this,
where pFinal adopts all the keyword entries, including relTol 0.05 in the p sub-dictionary
by the macro expansion $p, then overrides the relTol entry.

p
{

solver PCG;
preconditioner DIC;
tolerance 1e-6;
relTol 0.05;

}
pFinal
{

$p;
relTol 0;

}

Where a data lookup matches both a keyword and a regular expression, the keyword
match takes precedence irrespective of the order of the entries.

4.2.15 Inline calculations
There are two further directives that enable calculations from within input files: #calc,
described here, for simple calculations; and #codeStream, for more complex calculations,
described in section 4.2.15.

The pipeCyclic tutorial in $FOAM_TUTORIALS/incompressibleFluid demonstrates the #calc
directive through its blockMesh configuration in blockMeshDict:

//- Half angle of wedge in degrees
halfAngle 45.0;

//- Radius of pipe [m]
radius 0.5;

radHalfAngle #calc "degToRad($halfAngle)";
y #calc "$radius*sin($radHalfAngle)";
z #calc "$radius*cos($radHalfAngle)";

The file contains several calculations that calculate vertex ordinates, e.g. y, z, etc., from
geometry dimensions, e.g. radius.

Calculations include standard C++ functions including unit conversions, e.g. degToRad,
and trigonometric functions, e.g. sin. They can also include OpenFOAM mathematical
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functions if the relevant header files are included for those functions. The #calcInclude
directive enables header files to be included for use with #calc.

The aerofoilNACA0012Steady example, using the fluid solver module, sets the inlet velocity
using an angle of attack using the code below. The transform function is provided by the
transform.H header file, to rotate unit vectors by the angle of attack to set the lift and drag
directions.

angleOfAttack 5; // degs

angle #calc "-degToRad($angleOfAttack)";

#calcInclude "transform.H"
liftDir #calc "transform(Ry($angle), vector(0, 0, 1))";
dragDir #calc "transform(Ry($angle), vector(1, 0, 0))";

Uinlet #calc "$speed*$<vector>dragDir";

The final line in the example above shows that dictionary entries constructed with #calc or
#codeStream (see below) can use variables that represent OpenFOAM classes, or types, such
as vector, tensor, List, Field, string etc.. To create a typed variable, the type is specified inside
angled brackets <>, immediately after the $ symbol, e.g. $<vector>var or $<vector>{var}
substitutes a variable named var as a vector. A simpler example shows a calculation c = a •b
using #calc.

a (1 2 3);
b (1 1 0);
c #calc "$<vector>a & $<vector>b";

Care is required with calculations involving a division because the / character is
otherwise used to identify keywords in sub-dictionaries, "$a/b" looks for a keyword b within
a sub-dictionary named a. Where a division is required, the user can put spaces around the
/, e.g.

c #calc "$a / $b";

or they can apply brackets around the first variable, e.g.

c #calc "$(a)/$b";

The code string can also be delimited by #{. . . #} instead of quotation marks ". . . ". The
former delimiter supports code strings across multiple lines and avoids problems with string
typed variables that may contain quotation marks, as shown in the following example.

s "field";
fieldName #calc
#{

$<string>s + "Name"
#};
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Further examples can be found in files in the test/dictionary directory in the OpenFOAM
installation.

4.2.16 Inline code
The #codeStream directive takes C++ code which is compiled and executed to deliver the
dictionary entry. The code and compilation instructions are specified through the following
keywords.

• code: specifies the code using arguments OStream& os and const dictionary& dict
which can be used in the code, e.g. to lookup keyword entries from within the current
case file.

• codeInclude (optional): specifies additional C++ #include statements to include
code files.

• codeOptions (optional): specifies any extra compilation flags to be added to EXE_INC
in Make/options.

• codeLibs (optional): specifies any extra compilation flags to be added to LIB_LIBS in
Make/options.

Code, like any string, can be written across multiple lines by enclosing it within hash-bracket
delimiters, i.e. #{...#}. Anything in between these two delimiters becomes a string with
all newlines, quotes, etc. preserved.

An example of #codeStream is given below, where the code in the calculates moment of
inertia of a box shaped geometry.
momentOfInertia #codeStream
{

codeInclude
#{

#include "diagTensor.H"
#};

code
#{

scalar sqrLx = sqr($Lx);
scalar sqrLy = sqr($Ly);
scalar sqrLz = sqr($Lz);
os <<

$mass
*diagTensor(sqrLy + sqrLz, sqrLx + sqrLz, sqrLx + sqrLy)/12.0;

#};
};

4.2.17 Conditionals
Input files support two conditional directives: #if. . . #else. . . #endif; and, #ifEq. . . #else. . .
#endif. The #if conditional reads a switch that can be generated by a #calc directive,
e.g.:
angle 65;

laplacianSchemes
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{
#if #calc "${angle} < 75"

default Gauss linear corrected;
#else

default Gauss linear limited corrected 0.5;
#endif
}

The #ifEq compares a word or string, and executes based on a match, e.g.:

rotating
{

timeScheme ${${FOAM_CASE}/system/fvSchemes!ddtSchemes/default};
#ifeq $timeScheme steadyState

type MRFnoSlip;
#else

type movingWallVelocity;
#endif

value uniform (0 0 0);
}

4.3 Global controls
OpenFOAM includes a large number of global parameters that are configured by default in
a file named controlDict. This is the so-called “global” controlDict file, as opposed to a case
controlDict file that is described in the following section.

The global controlDict file can be found in the installation within a directory named etc,
represented by the environment variable $FOAM_ETC. The file contains sub-dictionaries for
the following items.

• Documentation: for opening documentation in a web browser.

• InfoSwitches: controls information printed to standard output, i.e. the terminal.

• OptimisationSwitches: for parallel communication and I/O, see section 3.4.2.

• DebugSwitches: messaging switches to help debug code failures, as described in sec-
tion 3.2.11.

• DimensionedConstants: defines fundamental physical constants, e.g. Boltzmann’s
Constant.

• UnitConversions: defines units and conversion factors, e.g. cal for calorie, see sec-
tion 4.2.7.

4.3.1 Overriding global controls
The values of the DimensionedConstants depend on the unit system being adopted, i.e.
the International System of Units (SI units), or US Customary system (USCS), based on
English units (pounds, feet, etc.). The default system is naturally SI, but some users may
wish to override this with USCS units, either globally or for a specific case. The system is
set through the unitSet keyword, i.e.
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DimensionedConstants
{

unitSet SI; // USCS
}

While a user could modify this setting in the etc/controlDict file in the installation, it is
better practice to use a file in their user directory. OpenFOAM provides a set of directory
locations, where global configuration files can be included, which it looks up in an order of
precedence. To list the locations, simply run the following command.

foamEtcFile -list

The listed locations include a local $HOME/.OpenFOAM directory and follow a descending
order of precedence, i.e. the last location listed (etc) is lowest precedence.

If a user therefore wished to work permanently in USCS units, they could maintain a
controlDict file in their $HOME/.OpenFOAM directory that includes the following entry.
DimensionedConstants
{

unitSet USCS;
}

OpenFOAM would read the unitSet entry from this file, but read all other controlDict
keyword entries from the global controlDict file.

Alternatively, if a user wished to work on a single case in USCS units, they could add
the same entry into the controlDict file in the system directory for their case. This file is
discussed in the next section.

4.4 Time and data input/output control
The OpenFOAM solvers begin all runs by setting up a database. The database controls
I/O and, since output of data is usually requested at intervals of time during the run, time
is an inextricable part of the database. The controlDict dictionary sets input parameters
essential for the creation of the database. The keyword entries in controlDict are listed in
the following sections. Only the time control and writeInterval entries are mandatory,
with the database using default values for any of the optional entries that are omitted.
Example entries from a controlDict dictionary are given below:

16
17 solver incompressibleFluid;
18
19 startFrom latestTime;
20
21 startTime 0;
22
23 stopAt endTime;
24
25 endTime 0.3;
26
27 deltaT 0.0001;
28
29 writeControl adjustableRunTime;
30
31 writeInterval 0.01;
32
33 purgeWrite 0;
34
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35 writeFormat ascii;
36
37 writePrecision 6;
38
39 writeCompression off;
40
41 timeFormat general;
42
43 timePrecision 6;
44
45 runTimeModifiable yes;
46
47 adjustTimeStep yes;
48
49 maxCo 5;
50
51 // ************************************************************************* //

4.4.1 Modules
solver Choice of solver module for the simulation, e.g. incompressibleFluid

regionSolvers Dictionary of solvers for different domain regions, e.g. heat transfer of water
flowing over a plate might use the fluid and solid modules as follows:
regionSolvers
{

water fluid;
plate solid;

}
libs List of additional libraries (existing on $LD_LIBRARY_PATH) to be loaded at run-

time, e.g. ("libNew1.so" "libNew2.so")

4.4.2 Time control
startFrom Controls the start time of the simulation.

• firstTime: Earliest time step from the set of time directories.
• startTime: Time specified by the startTime keyword entry.
• latestTime: Most recent time step from the set of time directories.

startTime Start time for the simulation with startFrom startTime;

stopAt Controls the end time of the simulation.

• endTime: Time specified by the endTime keyword entry.
• writeNow: Stops simulation on completion of current time step and writes data.
• noWriteNow: Stops simulation on completion of current time step and does not

write out data.
• nextWrite: Stops simulation on completion of next scheduled write time, specified

by writeControl.

endTime End time for the simulation when stopAt endTime; is specified.

deltaT Time step of the simulation.
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4.4.3 Data writing
writeControl Controls the timing of write output to file.

• timeStep: Writes data every writeInterval time steps.
• runTime: Writes data every writeInterval seconds of simulated time.
• adjustableRunTime: Writes data every writeInterval seconds of simulated

time, adjusting the time steps to coincide with the writeInterval if necessary
— used in cases with automatic time step adjustment.

• cpuTime: Writes data every writeInterval seconds of CPU time.
• clockTime: Writes data out every writeInterval seconds of real time.

writeInterval Scalar used in conjunction with writeControl described above.

purgeWrite Integer representing a limit on the number of time directories that are stored by
overwriting time directories on a cyclic basis. For example, if the simulations starts at
t = 5s and ∆t = 1s, then with purgeWrite 2;, data is first written into 2 directories,
6 and 7, then when 8 is written, 6 is deleted, and so on so that only 2 new results
directories exists at any time. To disable the purging, specify purgeWrite 0; (default).

writeFormat Specifies the format of the data files.

• ascii (default): ASCII format, written to writePrecision significant figures.
• binary: binary format.

writePrecision Integer used in conjunction with writeFormat described above, 6 by de-
fault.

writeCompression Switch to specify whether files are compressed with gzip when written:
on/off (yes/no, true/false)

timeFormat Choice of format of the naming of the time directories.

• fixed: ±m.dddddd where the number of ds is set by timePrecision.
• scientific: ±m.dddddde±xx where the number of ds is set by timePrecision.
• general (default): Specifies scientific format if the exponent is less than -4 or

greater than or equal to that specified by timePrecision.

timePrecision Integer used in conjunction with timeFormat described above, 6 by default.

graphFormat Format for graph data written by an application.

• raw (default): Raw ASCII format in columns.
• gnuplot: Data in gnuplot format.
• csv: Comma-separated values.
• vtk: Visualisation Toolkit (VTK) format.
• ensight: Ensight format.

OpenFOAM-13



U-118 OpenFOAM cases

4.4.4 Other settings
beginTime Optional entry to for cases with an unusual start time that causes inconvenient

write times. With beginTime, the write times are multiples of writeInterval, starting
at the beginTime. For example, if the start time of 1.52 and a writeInterval of 1,
results would be written at 2.52, 3.52, . . . If beginTime is set to 0 (or 1), the write
times would be 2, 3, etc.
Switch used by some solvers to adjust the time step during the simulation, usually
according to maxCo.

adjustTimeStep Switch used by some solvers to adjust the time step during the simulation,
usually according to maxCo.

maxCo Maximum Courant number, e.g. 0.5

runTimeModifiable Switch for whether dictionaries, e.g.controlDict, are re-read during a
simulation at the beginning of each time step, allowing the user to modify parameters
during a simulation.

functions Dictionary of functions, e.g. probes to be loaded at run-time; see examples in
$FOAM_TUTORIALS

4.5 Numerical schemes
The fvSchemes dictionary in the system directory sets the numerical schemes for terms, such
as derivatives in equations, that are calculated during a simulation. This section describes
how to specify the schemes in the fvSchemes dictionary. Details of the schemes are described
in Chapter 3 of Notes on Computational Fluid Dynamics: General Principles.

The aim for fvSchemes is to provide an unrestricted choice of schemes to the user for
everything from derivatives, e.g. gradient ∇, to interpolations of values from one set of
points to another. OpenFOAM uses the finite volume method so spatial derivatives are
based on Gaussian integration which sums values on cell faces, which must be interpolated
from cell centres. The user has a wide range of options for interpolation schemes, with certain
schemes being specifically designed for particular derivative terms, especially the advection
divergence ∇ • terms.

The set of terms, for which numerical schemes must be specified, are subdivided within
the fvSchemes dictionary into the categories below, using Ψ as an example field variable.

• timeScheme: first and second time derivatives, e.g. ∂Ψ/∂t, ∂2Ψ/∂2t

• gradSchemes: gradient ∇Ψ

• divSchemes: divergence ∇ •Ψ

• laplacianSchemes: Laplacian ∇ •Γ∇Ψ, with diffusivity Γ

• interpolationSchemes: cell to face interpolations of values.

• snGradSchemes: component of gradient normal to a cell face.
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• wallDist: distance to wall calculation, where required.

Each keyword is the name of a sub-dictionary which contains terms of a particular type, e.g.
gradSchemes contains all the gradient derivative terms such as grad(p) (which represents
∇p). Further examples can be seen in the extract from an fvSchemes dictionary below:

16
17 ddtSchemes
18 {
19 default Euler;
20 }
21
22 gradSchemes
23 {
24 default Gauss linear;
25 }
26
27 divSchemes
28 {
29 default none;
30
31 div(phi,U) Gauss linearUpwind grad(U);
32 div(phi,k) Gauss upwind;
33 div(phi,epsilon) Gauss upwind;
34 div(phi,R) Gauss upwind;
35 div(R) Gauss linear;
36 div(phi,nuTilda) Gauss upwind;
37
38 div((nuEff*dev2(T(grad(U))))) Gauss linear;
39 }
40
41 laplacianSchemes
42 {
43 default Gauss linear corrected;
44 }
45
46 interpolationSchemes
47 {
48 default linear;
49 }
50
51 snGradSchemes
52 {
53 default corrected;
54 }
55
56
57 // ************************************************************************* //

The example shows fvSchemes with 6 . . . Schemes subdictionaries, each containing keyword
entries including: a default entry; other entries for the particular term specified, e.g.

div(phi, k) for ∇ • (Uk). If a default scheme is specified in a particular . . . Schemes
sub-dictionary, it is assigned to all of the terms to which the sub-dictionary refers, e.g. spec-
ifying a default in gradSchemes sets the scheme for all gradient terms in the application,
e.g. ∇p, ∇U. With a default specified, the specific terms are not required in that sub-
dictionary, i.e. the entries for grad(p), grad(U) are omitted in this example. Specifying a
particular will however override the default scheme.

The user can specify no default scheme by the none entry, as in the divSchemes in
the example above. The user is then obliged to specify all terms in that sub-dictionary
individually. Setting default to none ensures the user specifies all terms individually which
is common for divSchemes which requires precise configuration.

OpenFOAM includes a vast number of discretisation schemes, from which only a few
are typically recommended for real-world, engineering applications. The user can get help
with scheme selection by interrogating the tutorial cases for example scheme settings. They
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should look at the schemes used in relevant cases, e.g. for running a large-eddy simulation
(LES), look at schemes used in tutorials running LES. Additionally, foamSearch is a useful
tool to list the schemes used in all the tutorials. For example, to print all the default entries
for ddtSchemes for cases in the $FOAM_TUTORIALS directory, the user can type:

foamSearch $FOAM_TUTORIALS fvSchemes ddtSchemes/default

which returns:

default backward;
default CrankNicolson 0.9;
default Euler;
default localEuler;
default none;
default steadyState;

The schemes listed using foamSearch are described in the following sections.

4.5.1 Time schemes
The first time derivative (∂/∂t) terms are specified in the ddtSchemes sub-dictionary. The
discretisation schemes for each term can be selected from those listed below.

• steadyState: sets time derivatives to zero.

• Euler: transient, first order implicit, bounded.

• backward: transient, second order implicit, potentially unbounded.

• CrankNicolson: transient, second order implicit, bounded; requires an off-centering
coefficient ψ where:

ψ =

1 corresponds to pure CrankNicolson,
0 corresponds to Euler;

generally ψ = 0.9 is used to stabilise the scheme for practical engineering problems.

• localEuler: pseudo transient for accelerating a solution to steady-state using local-
time stepping; first order implicit.

Any second time derivative (∂2/∂t2) terms are specified in the d2dt2Schemes sub-dictionary.
Only the Euler scheme is available for d2dt2Schemes.
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4.5.2 Gradient schemes
The gradSchemes sub-dictionary contains gradient terms. The default discretisation scheme
that is primarily used for gradient terms is:

default Gauss linear;

The Gauss entry specifies the standard finite volume discretisation with Gaussian integration
which requires the interpolation of values from cell centres to face centres. The interpolation
scheme is then given by the linear entry, meaning linear interpolation or central differencing.

In some tutorials cases, particular involving poorer quality meshes, the discretisation of
specific gradient terms is then overridden to improve boundedness and stability. The terms
that are overridden in those cases are the velocity gradient

grad(U) cellLimited Gauss linear 1;

and, less frequently, the gradient of turbulence fields, e.g.

grad(k) cellLimited Gauss linear 1;
grad(epsilon) cellLimited Gauss linear 1;

They use the cellLimited scheme which limits the gradient such that when cell values are
extrapolated to faces using the calculated gradient, the face values do not fall outside the
bounds of values in surrounding cells. A limiting coefficient is specified after the underlying
scheme for which 1 guarantees boundedness and 0 applies no limiting; 1 is invariably used.

Other schemes that are rarely used are as follows.

• leastSquares: a second-order, least squares distance calculation using all neighbour
cells.

• Gauss cubic: third-order scheme that appears in solidDisplacement and dnsFoam ex-
amples.

4.5.3 Divergence schemes
The divSchemes sub-dictionary contains divergence terms, i.e. terms of the form ∇ • . . . ,
excluding Laplacian terms (of the form ∇ •Γ∇Ψ). This includes both advection terms, e.g.
∇ • (Uk), where velocity U provides the advective flux, and other terms, that are often
diffusive in nature, e.g. ∇ • ν(∇U)T.

The fact that terms that are fundamentally different reside in one sub-dictionary means
that the default scheme in generally set to none in divSchemes. The non-advective terms
then generally use the Gauss integration with linear interpolation, e.g.

div(U) Gauss linear;
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The treatment of advective terms is one of the major challenges in CFD numerics and so
the options are more extensive. The keyword identifier for the advective terms are usually of
the form div(phi,...), where phi denotes the (volumetric) flux of velocity on the cell faces
for constant-density flows and the mass flux for compressible flows, e.g. div(phi,U) for the
advection of velocity, div(phi,e) for the advection of internal energy, etc. For advection of
velocity, the user can run the foamSearch script to extract the div(phi,U) keyword from all
tutorials.

foamSearch $FOAM_TUTORIALS fvSchemes "divSchemes/div(phi,U)"

The schemes are all based on Gauss integration, using the flux phi and the advected field be-
ing interpolated to the cell faces by one of a selection of schemes, e.g. linear, linearUpwind,
etc. There is a bounded variant of the discretisation, discussed later.

Ignoring ‘V’-schemes (with keywords ending “V”), and rarely-used schemes such as Gauss
cubic and vanLeerV, the interpolation schemes used in the tutorials are as follows.

• linear: second order, unbounded.

• linearUpwind: second order, upwind-biased, unbounded (but much less so than linear),
that requires discretisation of the velocity gradient to be specified.

• LUST: blended 75% linear/ 25%linearUpwind scheme, that requires discretisation of
the velocity gradient to be specified.

• limitedLinear: linear scheme that limits towards upwind in regions of rapidly
changing gradient; requires a coefficient, where 1 is strongest limiting, tending towards
linear as the coefficient tends to 0.

• upwind: first-order bounded, generally too inaccurate for velocity but more often used
for transport of scalar fields.

Example syntax for these schemes is as follows.

div(phi,U) Gauss linear;
div(phi,U) Gauss linearUpwind grad(U);
div(phi,U) Gauss LUST grad(U);
div(phi,U) Gauss LUST unlimitedGrad(U);
div(phi,U) Gauss limitedLinear 1;
div(phi,U) Gauss upwind;

‘V’-schemes are specialised versions of schemes designed for vector fields. They differ
from conventional schemes by calculating a single limiter which is applied to all components
of the vectors, rather than calculating separate limiters for each component of the vector.
The ‘V’-schemes’ single limiter is calculated based on the direction of most rapidly changing
gradient, resulting in the strongest limiter being calculated which is most stable but arguably
less accurate. Example syntax is as follows.

div(phi,U) Gauss limitedLinearV 1;
div(phi,U) Gauss linearUpwindV grad(U);
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The bounded variants of schemes relate to the treatment of the material time derivative
which can be expressed in terms of a spatial time derivative and convection, e.g. for field e
in incompressible flow

De

Dt
= ∂e

∂t
+U •∇e = ∂e

∂t
+∇ • (Ue)− (∇ •U)e (4.1)

For numerical solution of incompressible flows, ∇ •U = 0 at convergence, at which point
the third term on the right hand side is zero. Before convergence is reached, however,
∇ •U ̸= 0 and in some circumstances, particularly steady-state simulations, it is better
to include the third term within a numerical solution to help maintain boundedness of the
solution variable and promote better convergence. The bounded variant of the Gauss scheme
provides this, automatically including the discretisation of the third-term with the advection
term. Example syntax is as follows, as seen in fvSchemes files for steady-state cases.

div(phi,U) bounded Gauss limitedLinearV 1;
div(phi,U) bounded Gauss linearUpwindV grad(U);

The schemes used for advection of scalar fields are similar to those for advection of
velocity, although in general there is greater emphasis placed on boundedness than accuracy
when selecting the schemes. For example, a search for schemes for advection of internal
energy (e) reveals the following.

foamSearch $FOAM_TUTORIALS fvSchemes "divSchemes/div(phi,e)"

div(phi,e) bounded Gauss upwind;
div(phi,e) Gauss limitedLinear 1;
div(phi,e) Gauss linearUpwind limited;
div(phi,e) Gauss LUST grad(e);
div(phi,e) Gauss upwind;
div(phi,e) Gauss vanAlbada;

In comparison with advection of velocity, there are no cases set up to use linear. The
limitedLinear and upwind schemes are commonly used, with the additional appearance of
vanLeer, another limited scheme, with less strong limiting than limitedLinear.

There are specialised versions of the limited schemes for scalar fields that are commonly
bounded between 0 and 1, e.g. the laminar flame speed regress variable b. A search for the
discretisation used for advection in the laminar flame transport equation yields:

div(phiSt,b) Gauss limitedLinear01 1;

The underlying scheme is limitedLinear, specialised for stronger bounding between 0 and
1 by adding 01 to the name of the scheme.

The multivariateSelectionmechanism also exists for grouping multiple equation terms
together, and applying the same limiters on all terms, using the strongest limiter calculated
for all terms. A good example of this is in a set of mass transport equations for fluid species,
where it is good practice to apply the same discretisation to all equations for consistency.
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The example below comes from the smallPoolFire3D tutorial in $FOAM_TUTORIALS/multi-
compon/entFluid, in which the equation for enthalpy h is included with the specie mass
transport equations in the calculation of a single limiter.

div(phi,Yi_h) Gauss multivariateSelection
{

O2 limitedLinear01 1;
CH4 limitedLinear01 1;
N2 limitedLinear01 1;
H2O limitedLinear01 1;
CO2 limitedLinear01 1;
h limitedLinear 1 ;

}

4.5.4 Surface normal gradient schemes

It is worth explaining the snGradSchemes sub-dictionary that contains surface normal gra-
dient terms, before discussion of laplacianSchemes, because they are required to evaluate a
Laplacian term using Gaussian integration. A surface normal gradient is evaluated at a cell
face; it is the component, normal to the face, of the gradient of values at the centres of the
2 cells that the face connects.

A search for the default scheme for snGradSchemes reveals the following entries.

default corrected;
default limited corrected 0.33;
default limited corrected 0.5;
default orthogonal;
default uncorrected;

The basis of the gradient calculation at a face is to subtract the value at the cell centre
on one side of the face from the value in the centre on the other side and divide by the
distance. The calculation is second-order accurate for the gradient normal to the face if the
vector connecting the cell centres is orthogonal to the face, i.e. they are at right-angles. This
is the orthogonal scheme.

Orthogonality requires a regular mesh, typically aligned with the Cartesian co-ordinate
system, which does not generally occur with real world, engineering geometries. Therefore,
to maintain second-order accuracy, an explicit non-orthogonal correction can be added to
the orthogonal component, known as the corrected scheme. The correction increases in
size as the non-orthogonality, i.e. the angle α between the cell-cell vector and face normal
vector, increases.

As α tends towards 90◦, typically beyond 75◦, the explicit correction can be so large to
cause a solution to go unstable. The solution can be stabilised by applying the limited
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scheme to the correction which requires a coefficient ψ, 0 ≤ ψ ≤ 1 where

ψ =


0 corresponds to uncorrected,
0.333 non-orthogonal correction ≤ 0.5× orthogonal part,
0.5 non-orthogonal correction ≤ orthogonal part,
1 corresponds to corrected.

(4.2)

Typically, psi is chosen to be 0.33 or 0.5, where 0.33 offers greater stability and 0.5 greater
accuracy.

The corrected scheme applies under-relaxation in which the implicit orthogonal calcula-
tion is increased by cos−1α, with an equivalent boost within the non-orthogonal correction.
The uncorrected scheme is equivalent to the corrected scheme, without the non-orthogonal
correction, so is like orthogonal but with the additional cos−1α under-relaxation.

Generally the uncorrected and orthogonal schemes are only recommended for meshes
with very low non-orthogonality (e.g. maximum 5◦). The corrected scheme is generally
recommended, but for maximum non-orthogonality above 75◦, limited may be required.
At non-orthogonality above 85◦, convergence is generally hard to achieve.

4.5.5 Laplacian schemes
The laplacianSchemes sub-dictionary contains Laplacian terms. A typical Laplacian term is
∇ • (ν∇U), the diffusion term in the momentum equations, which corresponds to the keyword
laplacian(nu,U) in laplacianSchemes. The Gauss scheme is the only choice of discretisation
and requires a selection of both an interpolation scheme for the diffusion coefficient, i.e. ν
in our example, and a surface normal gradient scheme, i.e. ∇U. To summarise, the entries
required are:

Gauss <interpolationScheme> <snGradScheme>

The user can search for the default scheme for laplacianSchemes in all the cases in the
$FOAM_TUTORIALS directory.

foamSearch $FOAM_TUTORIALS fvSchemes laplacianSchemes/default

It reveals the following entries.

default Gauss linear corrected;
default Gauss linear limited corrected 0.33;
default Gauss linear limited corrected 0.5;
default Gauss linear orthogonal;
default Gauss linear uncorrected;

In all cases, the linear interpolation scheme is used for interpolation of the diffusivity. The
cases uses the same array of snGradSchemes based on the maximum non-orthogonality in
the mesh, as described in section 4.5.4.
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4.5.6 Interpolation schemes
The interpolationSchemes sub-dictionary contains terms that are interpolations of values
typically from cell centres to face centres, primarily used in the interpolation of velocity
to face centres for the calculation of flux phi. There are numerous interpolation schemes
in OpenFOAM, but a search for the default scheme in all the tutorial cases reveals that
linear interpolation is used in almost every case, except for one stress analysis example
which uses cubic interpolation.

4.6 Solution and algorithm control
Once a matrix equation is constructed according to the schemes in the previous section, a
linear solver is applied. A set of equations is also framed within an algorithm containing loops
and controls. For information about the main algorithms and solvers in OpenFOAM, refer
to Chapter 5 of Notes on Computational Fluid Dynamics: General Principles.

The controls for algorithms and solvers are found in the fvSolution dictionary in the
system directory. Below is an example set of entries from the fvSolution dictionary for a case
using the incompressibleFluid modular solver.

16
17 solvers
18 {
19 p
20 {
21 solver GAMG;
22 tolerance 1e-7;
23 relTol 0.01;
24
25 smoother DICGaussSeidel;
26
27 }
28
29 pFinal
30 {
31 $p;
32 relTol 0;
33 }
34
35 "(U|k|epsilon)"
36 {
37 solver smoothSolver;
38 smoother symGaussSeidel;
39 tolerance 1e-05;
40 relTol 0.1;
41 }
42
43 "(U|k|epsilon)Final"
44 {
45 $U;
46 relTol 0;
47 }
48 }
49
50 PIMPLE
51 {
52 nNonOrthogonalCorrectors 0;
53 nCorrectors 2;
54 }
55
56
57 // ************************************************************************* //

fvSolution contains a set of subdictionaries, described in the remainder of this section that in-
cludes: solvers; relaxationFactors; and, SIMPLE for steady-state cases or PIMPLE for transient

OpenFOAM-13

https://doc.cfd.direct/notes/cfd-general-principles/algorithms-and-solvers


4.6 Solution and algorithm control U-127

or pseudo-transient cases.

4.6.1 Linear solver control
The first sub-dictionary in our example is solvers. It specifies each linear solver that is
used for each discretised equation; here, the term linear solver refers to the method of
number-crunching to solve a matrix equation, as opposed to an modular solver, such as
incompressibleFluid which describes the entire set of equations and algorithms to solve a
particular problem. The term ‘linear solver’ is abbreviated to ‘solver’ in much of what
follows; hopefully the context of the term avoids any ambiguity.

The syntax for each entry within solvers starts with a keyword that for the variable
being solved in the particular equation. For example, incompressibleFluid solves equations
for pressure p, velocity U and often turbulence fields, hence the entries for p, U, k and
epsilon. The keyword introduces a sub-dictionary containing the type of solver and the
parameters that the solver uses. The solver is selected through the solver keyword from
the options listed below. The parameters, including tolerance, relTol, preconditioner,
etc. are described in following sections.

• PCG/PBiCGStab: Stabilised preconditioned (bi-)conjugate gradient, for both symmetric
and asymmetric matrices.

• PCG/PBiCG: preconditioned (bi-)conjugate gradient, with PCG for symmetric matrices,
PBiCG for asymmetric matrices.

• smoothSolver: solver that uses a smoother.

• GAMG: generalised geometric-algebraic multi-grid.

• diagonal: diagonal solver for explicit systems.

The solvers distinguish between symmetric matrices and asymmetric matrices. The symme-
try of the matrix depends on the terms of the equation being solved, e.g. time derivatives
and Laplacian terms form coefficients of a symmetric matrix, whereas an advective derivative
introduces asymmetry. If the user specifies a symmetric solver for an asymmetric matrix, or
vice versa, an error message will be written to advise the user accordingly, e.g.

--> FOAM FATAL IO ERROR : Unknown asymmetric matrix solver PCG
Valid asymmetric matrix solvers are :
4
(
GAMG
PBiCG
PBiCGStab
smoothSolver
)
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4.6.2 Solution tolerances
The finite volume method generally solves equations in a segregated, decoupled manner,
meaning that each matrix equation solves for only one variable. The matrices are conse-
quently sparse, meaning they predominately include coefficients of 0. The solvers are gener-
ally iterative, i.e. they are based on reducing the equation residual over successive solutions.
The residual is ostensibly a measure of the error in the solution so that the smaller it is,
the more accurate the solution. More precisely, the residual is evaluated by substituting the
current solution into the equation and taking the magnitude of the difference between the
left and right hand sides; it is also normalised to make it independent of the scale of the
problem being analysed.

Before solving an equation for a particular field, the initial residual is evaluated based on
the current values of the field. After each solver iteration the residual is re-evaluated. The
solver stops if any one of the following conditions are reached:

• the residual falls below the solver tolerance, tolerance;

• the ratio of current to initial residuals falls below the solver relative tolerance, relTol;

• the number of iterations exceeds a maximum number of iterations, maxIter;

The solver tolerance should represent the level at which the residual is small enough that
the solution can be deemed sufficiently accurate. The solver relative tolerance limits the
relative improvement from initial to final solution. In transient simulations, it is usual to set
the solver relative tolerance to 0 to force the solution to converge to the solver tolerance in
each time step. The tolerances, tolerance and relTol must be specified in the dictionaries
for all solvers; maxIter is optional and defaults to a value of 1000.

Equations are very often solved multiple times within one solution step, or time step.
For example, when using the PIMPLE algorithm, a pressure equation is solved according
to the number specified by nCorrectors, as described in section 4.6.7. Where this occurs,
the solver is very often set up to use different settings when solving the particular equation
for the final time, specified by a keyword that adds Final to the field name. For example,
in the transient pitzDaily example for the incompressibleFluid solver, the solver settings for
pressure are as follows.

p
{

solver GAMG;
tolerance 1e-07;
relTol 0.01;
smoother DICGaussSeidel;

}

pFinal
{

$p;
relTol 0;

}
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If the case is specified to solve pressure 4 times within one time step, then the first 3
solutions would use the settings for p with relTol of 0.01, so that the cost of solving each
equation is relatively low. Only when the equation is solved the final (4th) time, it solves
to a residual level specified by tolerance (since relTol is 0, effectively deactivating it) for
greater accuracy, but at greater cost.

4.6.3 Preconditioned conjugate gradient solvers
There are a range of options for preconditioning of matrices in the conjugate gradient solvers,
represented by the preconditioner keyword in the solver dictionary, listed below. Note that
the DIC/DILU preconditioners are exclusively specified in the tutorials in OpenFOAM.

• DIC/DILU: diagonal incomplete-Cholesky (symmetric) and incomplete-LU (asymmet-
ric)

• FDIC: slightly faster diagonal incomplete-Cholesky (DIC with caching, symmetric)

• GAMG: geometric-algebraic multi-grid.

• diagonal: diagonal preconditioning, not generally used.

• none: no preconditioning.

4.6.4 Smooth solvers
The solvers that use a smoother require the choice of smoother to be specified. The smoother
options are listed below. The symGaussSeidel and GaussSeidel smoothers are preferred in
the tutorials.

• GaussSeidel: Gauss-Seidel.

• symGaussSeidel: symmetric Gauss-Seidel.

• DIC/DILU: diagonal incomplete-Cholesky (symmetric), incomplete-LU (asymmetric).

• DICGaussSeidel: diagonal incomplete-Cholesky/LU with Gauss-Seidel (symmetric/-
asymmetric).

When using the smooth solvers, the user can optionally specify the number of sweeps, by
the nSweeps keyword, before the residual is recalculated. Without setting it, it reverts to a
default value of 1.

4.6.5 Geometric-algebraic multi-grid solvers
The geometric-algebraic multi-grid (GAMG) method uses the principle of: generating a
quick solution on a mesh with a small number of cells; mapping this solution onto a finer
mesh; using it as an initial guess to obtain an accurate solution on the fine mesh. GAMG is
faster than standard methods when the increase in speed by solving first on coarser meshes
outweighs the additional costs of mesh refinement and mapping of field data. In practice,
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GAMG starts with the original mesh and coarsens/refines the mesh in stages. The coarsening
is limited by a specified minimum number of cells at the most coarse level.

The agglomeration of cells is performed by the method specified by the agglomerator
keyword. The tutorials all use the default faceAreaPair method. The agglomeration can
be controlled using the following optional entries, most of which default in the tutorials.

• cacheAgglomeration: switch specifying caching of the agglomeration strategy (default
true).

• nCellsInCoarsestLevel: approximate mesh size at the most coarse level in terms of
the number of cells (default 10).

• directSolveCoarset: use a direct solver at the coarsest level (default false).

• mergeLevels: keyword controls the speed at which coarsening or refinement is per-
formed; the default is 1, which is safest, but for simple meshes, the solution speed can
be increased by coarsening/refining 2 levels at a time, i.e. setting mergeLevels 2.

Smoothing is specified by the smoother as described in section 4.6.4. The number of
sweeps used by the smoother at different levels of mesh density are specified by the following
optional entries.

• nPreSweeps: number of sweeps as the algorithm is coarsening (default 0).

• preSweepsLevelMultiplier: multiplier for the number of sweeps between each coars-
ening level (default 1).

• maxPreSweeps: maximum number of sweeps as the algorithm is coarsening (default 4).

• nPostSweeps: number of sweeps as the algorithm is refining (default 2).

• postSweepsLevelMultiplier: multiplier for the number of sweeps between each re-
finement level (default 1).

• maxPostSweeps: maximum number of sweeps as the algorithm is refining (default 4).

• nFinestSweeps: number of sweeps at finest level (default 2).

4.6.6 Solution under-relaxation
The fvSolution file usually includes a relaxationFactors sub-dictionary which controls under-
relaxation. Under-relaxation is used to improve stability of a computation, particularly for
steady-state problems. It works by limiting the amount which a variable changes from one
iteration to the next, either by manipulating the matrix equation prior to solving for a field,
or by modifying the field afterwards. An under-relaxation factor α, 0 < α ≤ 1 specifies the
amount of under-relaxation, as described below.

• No specified α: no under-relaxation.

• α = 1: guaranteed matrix diagonal equality/dominance.
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• α decreases, under-relaxation increases.

• α = 0: solution does not change with successive iterations.

An optimum choice of α is one that is small enough to ensure stable computation but large
enough to move the iterative process forward quickly; values of α as high as 0.9 can ensure
stability in some cases and anything much below, say, 0.2 can be prohibitively restrictive in
slowing the iterative process.

Relaxation factors for under-relaxation of fields are specified within a field sub-dictionary;
relaxation factors for equation under-relaxation are within a equations sub-dictionary. An
example is shown below from a case with the incompressibleFluid solver module running in
steady-state mode. The factors are specified for pressure p, pressure U, and turbulent fields
grouped using a regular expression.

54 relaxationFactors
55 {
56 fields
57 {
58 p 0.3;
59 }
60 equations
61 {
62 U 0.7;
63 "(k|omega|epsilon).*" 0.7;
64 }
65 }
66
67 // ************************************************************************* //

For a transient case with the incompressibleFluid module, under-relaxation would simply slow
convergence of the solution within each time step. Instead, the following setting is generally
adopted to ensure diagonal equality which is generally required for convergence of a matrix
equation.

60 relaxationFactors
61 {
62 equations
63 {
64 ".*" 1;
65 }
66 }
67
68
69 // ************************************************************************* //

4.6.7 SIMPLE and PIMPLE algorithms
Most fluid solver modules use algorithms to couple equations for mass and momentum con-
servation known as:

• SIMPLE (semi-implicit method for pressure-linked equations);

• PIMPLE, a combination of PISO (pressure-implicit split-operator) and SIMPLE.

Within in time, or solution, step, the algorithms solve a pressure equation, to enforce mass
conservation, with an explicit correction to velocity to satisfy momentum conservation. They
optionally begin each step by solving the momentum equation — the so-called momentum
predictor.
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While all the algorithms solve the same governing equations (albeit in different forms), the
algorithms principally differ in how they loop over the equations. The looping is controlled
by input parameters that are listed below. They are set in a dictionary named after the
algorithm, i.e. SIMPLE, or PIMPLE.

• nCorrectors: used by PIMPLE, sets the number of times the algorithm solves the
pressure equation and momentum corrector in each step; typically set to 2 or 3.

• nNonOrthogonalCorrectors: used by all algorithms, specifies repeated solutions of the
pressure equation, used to update the explicit non-orthogonal correction, described in
section 4.5.4, of the Laplacian term ∇ • ((1/A)∇p); typically set to 0 for steady-state
and 1 for transient cases.

• nOuterCorrectors: used by PIMPLE, it enables looping over the entire system of
equations within on time step, representing the total number of times the system is
solved; must be ≥ 1 and is typically set to 1.

• momentumPredictor: switch that controls solving of the momentum predictor; typi-
cally set to off for some flows, including low Reynolds number and multiphase.

4.6.8 Pressure referencing
In a closed incompressible system, pressure is relative: it is the pressure range that matters
not the absolute values. In these cases, the solver sets a reference level of pRefValue in cell
pRefCell. These entries are generally stored in the SIMPLE or PIMPLE sub-dictionary.

4.7 Case management tools
There are a set of applications and scripts that help with managing case files and help the
user find and set keyword data entries in case files. The tools are described in the following
sections.

4.7.1 General file management
There are some tools for general management of case files, including foamListTimes, foam-
CleanCase and foamCloneCase. A case includes configuration files for various processes such
as meshing, case initialisation, simulation and post-processing. Each process generates new
data files in various directories, e.g. mesh data is stored in constant/polyMesh, CFD results
in time directories, and further post-processing in a postProcessing directory.

The foamListTimes utility lists the time directories for a case, omitting the 0 directory
by default. Prior to re-running a CFD simulation, it can be useful to delete the results from
the previous simulation. The foamListTimes utility provides this function through the -rm
option which deletes the listed time directories, executed by the following command.

foamListTimes -rm
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The foamCleanCase script aims to reset the case files to their original state, removing
all files generated during a workflow including the meshing, post-processing. It deletes
directories including: postProcessing and VTK; the constant/polyMesh directory; processor
directories from parallel decomposition; and, dynamicCode for run-time compiled code. The
script is simply run as follows.

foamCleanCase

The foamCloneCase script creates a new case, by copying the 0, system and constant
directories from an existing case. The copied case is ready to run since the mesh is copied
through the constant directory. If the original case is set up to run in parallel, the processor
directories can also be copied using the -processor option. The basic command is executed
simply as follows, where oldCase refers to an existing case directory.

foamCloneCase oldCase newCase

4.7.2 The foamDictionary utility
The foamDictionary utility offers several options for printing, editing and adding keyword
entries in case files. The utility is executed with a case dictionary file as an argument, e.g.
from within a case directory on the fvSchemes file.

foamDictionary system/fvSchemes

Without options, the utility prints the entries from the file, removing comments, e.g. as
follows for the fvSchemes file in the pitzDailySteady tutorial case.
FoamFile
{

format ascii;
class dictionary;
location "system";
object fvSchemes;

}

ddtSchemes
{

default steadyState;
}

gradSchemes
{

default Gauss linear;
grad(U) cellLimited Gauss linear 1;

}

divSchemes
{

default none;
div(phi,U) bounded Gauss linearUpwind grad(U);
turbulence bounded Gauss limitedLinear 1;
div(phi,k) $turbulence;
div(phi,epsilon) $turbulence;
div(phi,omega) $turbulence;
div(phi,v2) $turbulence;
div((nuEff*dev2(T(grad(U))))) Gauss linear;
div(nonlinearStress) Gauss linear;

}
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laplacianSchemes
{

default Gauss linear corrected;
}

interpolationSchemes
{

default linear;
}

snGradSchemes
{

default corrected;
}

The output includes the macros before expansion, indicated by the $ symbol, e.g. $turbul-
ence. The macros can be expanded by the -expand option as shown below

foamDictionary -expand system/fvSchemes

The -entry option prints the entry for a particular keyword, expanding the macros by
default, e.g. divSchemes in the example below

foamDictionary -entry divSchemes system/fvSchemes

The example clearly extracts the divSchemes dictionary.
divSchemes
{

default none;
div(phi,U) bounded Gauss linearUpwind grad(U);
turbulence bounded Gauss limitedLinear 1;
div(phi,k) $turbulence;
div(phi,epsilon) $turbulence;
div(phi,omega) $turbulence;
div(phi,v2) $turbulence;
div((nuEff*dev2(T(grad(U))))) Gauss linear;
div(nonlinearStress) Gauss linear;

}

The “/” syntax allows access to keywords with levels of sub-dictionary. For example, the
div(phi,U) keyword can be accessed within the divSchemes sub-dictionary by the following
command.

foamDictionary -entry "divSchemes/div(phi,U)" system/fvSchemes

The example returns the single divSchemes/div(phi,U) entry.

div(phi,U) bounded Gauss linearUpwind grad(U);

The -value option prints only the entry.

foamDictionary -entry "divSchemes/div(phi,U)" -value system/fvSchemes

The example removes the keyword and terminating semicolon, leaving just the data.
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bounded Gauss linearUpwind grad(U)

The -keywords option prints only the keywords.

foamDictionary -entry divSchemes -keywords system/fvSchemes

The example produces a list of keywords inside the divSchemes dictionary.
default
div(phi,U)
div(phi,k)
div(phi,epsilon)
div(phi,omega)
div(phi,v2)
div((nuEff*dev2(T(grad(U)))))
div(nonlinearStress)

foamDictionary can set entries with the -set option. If the user wishes to change the
div(phi,U) to the upwind scheme, they can enter the following.

foamDictionary -entry "divSchemes/div(phi,U)" \
-set "bounded Gauss upwind" system/fvSchemes

An alternative “=” syntax can be used with the -set option which is particularly useful
when modifying multiple entries:

foamDictionary -set "startFrom=startTime, startTime=0" \
system/controlDict

foamDictionary can add entries with the -add option. If the user wishes to add an entry
named turbulence to divSchemes with the upwind scheme, they can enter the following.

foamDictionary -entry "divSchemes/turbulence" \
-add "bounded Gauss upwind" system/fvSchemes

4.7.3 The foamSearch script
The foamSearch script, demonstrated extensively in section 4.5, uses foamDictionary to ex-
tract and sort keyword entries from all files of a specified name in a specified dictionary.
The -c option counts the number of entries of each type, e.g. the user could searche for the
choice of solver for the p equation in all the fvSolution files in the tutorials.

foamSearch -c $FOAM_TUTORIALS fvSolution solvers/p/solver

The search shows GAMG to be the most common choice in all the tutorials.

64 solver GAMG;
2 solver PBiCGStab;

26 solver PCG;
5 solver smoothSolver;
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4.7.4 The foamGet script
The foamGet script copies configuration files into a case quickly and conveniently. The user
must be inside a case directory to run the script or identify the case directory with the -case
option. Its operation can be described using the pitzDailySteady case described in section 2.1.
The example begins by copying the case directory as follows:

run
cp -r $FOAM_TUTORIALS/modules/incompressibleFluid/pitzDailySteady .

The mesh is generated for the case by going into the case directory and running blockMesh:

cd pitzDailySteady
blockMesh

The user might decide before running the simulation to configure some automatic post-
processing as described in section 7.2. The user can list the pre-configured function objects
by the following command.

foamPostProcess -list

From the output, the user could select the patchFlowRate function to monitor the flow
rate at the outlet patch. The patchFlowRate configuration file can be copied into the system
directory using foamGet:

foamGet patchFlowRate

In order to monitor the flow through the outlet patch, the patch entry in patchFlowRate
file should be set as follows:

patch outlet;

The patchFlowRate configuration is then included in the case by adding to a functions file
system directory, as discussed in section 7.2.

functions
{

...
//#includeFunc writeObjects(kEpsilon:G) // existing entry
#includeFunc patchFlowRate

}
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4.7.5 The foamInfo script
The foamInfo script provides quick information and examples relating to thing in OpenFOAM
that the user can “select”. The selections include models (including boundary conditions and
packaged function objects), solver modules, applications and scripts. For example, foamInfo
prints information about the incompressibleFluid solver module by typing the following:

foamInfo incompressibleFluid

Information for the flowRateInletVelocity boundary condition can similarly be obtained by
typing the following command.

foamInfo flowRateInletVelocity

The output includes: the location of the source code header file for this boundary condition;
the description and usage details from the header file; a list of other models of the same type,
i.e. other boundary conditions; and, a list of example cases that use the boundary condition.
This example is demonstrated in section 2.1.17.

When the user requests information about a model with foamInfo, it attempts to provide
a list of other models in the “family”. For example, if the user requests information about
the kEpsilon turbulence model by

foamInfo kEpsilon

the output includes the following

Model
This appears to be the 'kEpsilon' model of the 'RAS' family.
The models in the 'RAS' family are:
+ kEpsilon
+ kOmega
+ kOmega2006
+ kOmegaSST
+ kOmegaSSTLM
+ kOmegaSSTSAS
+ LaunderSharmaKE
+ LRR
+ RAS
+ realizableKE
+ RNGkEpsilon
+ SpalartAllmaras
+ SSG
+ v2f

It provides fairly complete lists for fvModels and fvConstraints, which can be demonstrated
by typing the following commands.
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foamInfo clouds
foamInfo limitTemperature

It also lists options used in input files, e.g. for Function1 entries in boundary conditions,
searchableSurface entries in the configuration of snappyHexMesh. Users could try searching
for specific models within those families or the families themselves, e.g.

foamInfo linearRamp
foamInfo triSurfaceMesh
foamInfo Function1
foamInfo searchableSurfaces

4.7.6 The foamToC utility
The foamToC utility lists all the options in OpenFOAM which the user can select through
input files. The functionality overlaps with foamInfo to some extent but foamToC produces
more definitive reporting since it is an OpenFOAM application which directly interrogates
the run-time selection tables in the compiled libraries. The “ToC” in the name is an abbre-
viation for “Table of Contents.”

As well as providing general options to interrogate anything in OpenFOAM, foamToC
includes specific options that replicate most of the “-list...” options included in appli-
cation solvers prior to v11. These options included: -listScalarBCs and -listVectorBCs
to list boundary conditions; -listFunctionObjects to list functionObjects; -listFvModels
to list fvModels; and, -listFvConstraints to list fvConstraints. The equivalent options in
foamToC are listed below, with an additional -solvers option:

• -scalarBCs and -vectorBCs to list boundary conditions;

• -functionObjects to list functionObjects;

• -fvModels to list fvModels;

• -fvConstraints to list fvConstraints; and,

• -solvers to list the solver modules.

For example, with the last option, foamToC prints the following output
>> foamToC -fvConstraints

fvConstraints:
Contents of table fvConstraint:

bound libfvConstraints.so
fixedTemperatureConstraint libfvConstraints.so
fixedValueConstraint libfvConstraints.so
limitMag libfvConstraints.so
limitPressure libfvConstraints.so
limitTemperature libfvConstraints.so
meanVelocityForce libfvConstraints.so
patchMeanVelocityForce libfvConstraints.so
zeroDimensionalFixedPressure libfvConstraints.so
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Each fvConstraint is listed in the left column with the library to which it belongs in the right
column. The options listed above essentially invoke the more general -table option that
lists the contents of a run-time selection table. The -fvConstraints option is equivalent to
the following command which lists the items in the fvConstraint table.

foamToC -table fvConstraint

All the selection tables in OpenFOAM are listed by running foamToC with the -tables
option as shown below.

foamToC -tables

This is also the default response of foamToC without options, i.e.

foamToC

By default foamToC loads all the libraries in OpenFOAM to produce a complete list of
tables. The user can control the libraries that are loaded with the following options.

• -noLibs: only loads the core libOpenFOAM.so library by default.

• -solver <solver>: only loads libraries associated with the specified solver module
<solver>.

• -libs '("lib1.so" ... "libN.so")': additionally pre-loads specified libraries, e.g.
customised libraries of the user.

An important use of foamToC is to enable users to find alternative models to the one currently
configured for their case. The challenge is to find the table that contains the models they
wish to list. The -search option helps with this, since it takes an entry, e.g. a model,
and reports the table in which it belongs. For example, if the user was familiar with the
BirdCarreau model for viscosity and wished to list alternative non-Newtonian models, they
could first issue the following command.

>> foamToC -search BirdCarreau

BirdCarreau is in table
generalisedNewtonianViscosityModel libmomentumTransportModels.so

Having identified the table, the user can then list its contents using the -table option.

>> foamToC -table generalisedNewtonianViscosityModel

Contents of table generalisedNewtonianViscosityModel:
BirdCarreau libmomentumTransportModels.so
Casson libmomentumTransportModels.so
CrossPowerLaw libmomentumTransportModels.so
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HerschelBulkley libmomentumTransportModels.so
Newtonian libmomentumTransportModels.so
powerLaw libmomentumTransportModels.so
strainRateFunction libmomentumTransportModels.so

If the user wished to list the solver modules, they can run

foamToC -solvers

which is equivalent to running

foamToC -table solver

With turbulence models, a search for kEpsilon lists the following set of tables (the corre-
sponding libraries are not shown here).

kEpsilon is in table
RAS

RAScompressibleMomentumTransportModel
RASincompressibleMomentumTransportModel
RASphaseCompressibleMomentumTransportModel
RASphaseIncompressibleMomentumTransportModel

The output indicates the model exists in different tables corresponding to both incompress-
ible and compressible flows, and both single phase and multi-phase flows (phase indicates
multi-phase in the table name). For single phase, incompressible flows, the available RAS
turbulence models can be listed as follows.

foamToC -table RASincompressibleMomentumTransportModel

4.7.7 The foamUnits script
The foamUnits utility provides details of named units and dimensional units, described in
sections 4.2.7 and 4.2.6, respectively. Users can list the named units by running with the
-list option, i.e.

foamUnits -list

It returns the following:

Basic units: [kg] [m] [s] [K] [kmol] [A] [Cd]
Derived units: [Hz] [N] [Pa] [J] [W]
...

Similarly, they can list dimensional units with the addition of the -dimension option as
follows:
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foamUnits -list -dimensions

It returns the following:

Base dimensions: [mass] [length] [time] [temperature] [moles] ...
Derived dimensions:

[area] [volume] [rate] [velocity] [momentum]
...

They can print the details of any unit, e.g. calorie [cal] by

foamUnits cal

which returns the base units and conversion factor:

Unit [cal]
+ Base unit = [J]
+ Conversion factor = 4.184

They can similarly print details of any named dimension, e.g. [energ], with the -dimension
option

foamUnits -dimension energy

It produces the following:

Dimension [energy]
+ Base dimensions = [force*length]

Finally, the details of all named units or dimensional units can be printed by foamUnits
using the -all option, with or without the -dimension option.

4.7.8 The foamFind script
The foamFind script searches for files in OpenFOAM. It can simply provide the location of
files by printing their filename including the path. Alternatively it can print the entire file
into the terminal, print lines matching a search string or open the file in a text editor. The
script is principally used to locate source code files (so perhaps does not fall much under
“Case Management”, the title of this section of the guide).

For example, if a user wished to locate the file wallHeatFlux.C, they could simply type

foamFind wallHeatFlux.C

This would simply return the location of the file, e.g.
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File: $FOAM_SRC//functionObjects/field/wallHeatFlux/wallHeatFlux.C

The -print option would additionally print the contents of the file to the terminal; the
argument positioning is flexible:

foamFind -print wallHeatFlux.C
foamFind wallHeatFlux.C -print # Alternatively

To view the printed file slowly, the user could pipe the output to the UNIX less command

foamFind wallHeatFlux.C -print | less

less provides some keystroke to scroll, search and quit:

• click the space bar, page up, page down keys to scroll;

• enter line number after “:” to jump to a line;

• enter “/” followed by a string to search for the string, e.g. /calc to search for “calc”;

• enter “q” to quit.

A file can also be opened in a file editor using the -editor option. For this option to
work, the user’s environment must include an $EDITOR environment variable set to the
user’s editor of choice. For example, to set the gedit editor, the user could add the following
to their $HOME/.bashrc file:

export EDITOR=gedit

The following command would then open the wallHeatFlux.C file in the gedit editor:

foamFind wallHeatFlux.C -edit

The foamFind script includes the -search option to print lines of a file matching a string,
e.g. to search “heat”:

foamFind wallHeatFlux.C -search heat

The -isearch option make the search case insensitive, e.g. so would also match “Heat”
(upper case) in the example.

foamFind wallHeatFlux.C -isearch heat

The -numbers option writes output with line numbers, e.g.

foamFind wallHeatFlux.C -isearch heat -numbers
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The source code is ultimately compiled with wmake as described in section 3.2. The
instructions for wmake are included in the files and options files in an associated Make direc-
tory. The foamFind script include two options, -files and -options, which return the files
and options files, respectively, associated with the source code file. The following command
would locate the options file associated with wallHeatFlux:

foamFind wallHeatFlux.C -options

By default, foamFind is searching for source code files so begins its search from the
$FOAM_SRC directory within the OpenFOAM installation. Alternative directories for the
search can be specified with the following options:

• -applications: the $FOAM_APP (applications) directory;

• -modules: the $FOAM_MODULES (modules) directory;

• -tutorial: the $FOAM_TUTORIALS (tutorials) directory;
The -dir option also allows the user to specify any other directory.

The foamFind script could find multiple files of the same name in a single search, e.g.
looking for createFields.H in the $FOAM_APP directory by:

foamFind -applications createFields.H -print

This returns a selection of over 20 files, with each one numbered. The user can then enter
the number of one particular file, or ENTER to print them all.

4.7.9 The foamMergeCase script
There is often a need to run several CFD simulations which are generally similar but include
small differences. The foamMergeCase script is designed to help maintain cases in these
circumstances. It operates on the basis that there first exists a working “source” case from
which “variant” cases are created.

A variant case only contains files which include modifications from those in the source
case, organised in the same directory structure The files are given a special .orig extension
and only need to include the modified entries. The foamMergeCase script can then be
executed from within the variant case directory with the source case directory provided as
an argument.

There is an accompanying foamUnMergeCase script which removes files that the foam-
MergeCase scripts copies from the source case. The variant case should include their own
Allrun and Allclean scripts which include the respective foamMergeCase and foamUnMergeCase
commands.

Let us provide an example that uses the pitzDaily case as the source. The variant case,
pitzDailyWater, will be identical to pitzDaily except that it will run with a kinematic viscosity
of ν = 10−6 m2 s−1 = 1 cSt (centistokes).

The first step of setting up a variant case is to copy the source case and then delete
directories and files that remain unchanged during the merge. In our example, we can start
from the run directory using the run alias, copy the pitzDaily case, renaming it pitzDailyWater,
and then change into that directory.
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run
cp -r $FOAM_TUTORIALS/incompressibleFluid/pitzDaily pitzDailyWater
cd pitzDailyWater

The user should then delete the directories and files that are not going to be merged, as
follows.

rm -rf 0 system constant/momentumTransport

The kinematic viscosity is configured by the nu in the physicalProperties file in the constant
directory. The modification to nu must be stored in a file named physicalProperties.orig in
the corresponding directory. Therefore, the user should first rename physicalProperties to
physicalProperties.orig.

mv constant/physicalProperties constant/physicalProperties.orig

The physicalProperties.orig should then be opened in an editor. The keyword entry for
viscosityModel should be deleted. The entry for nu should be changed to the following
(using cSt units described in section 4.7.8).

nu 1 [cSt];

The current case directory is now the complete variant case to the pitzDaily source case. A
simulation can now be run by first merging in the pitzDaily source case using foamMergeCase
as follows.

foamMergeCase $FOAM_TUTORIALS/incompressibleFluid/pitzDaily

The script copies across the relevant files from pitzDaily, while merging the changes in phys-
icalProperties.orig into the physicalProperties file. The case runs with the Allrun script.

./Allrun

The case results can be visualised using ParaView to demonstrate it all works as expected.
The user can subsequently use foamUnMergeCase, a complementary script to foamMerge-

Case, to reset the pitzDailyWater case to its original “variant” form, containing only the
physicalProperties.orig file. The case should first be cleaned to removed results, log files and
post-processed data using the foamCleanCase script.

foamCleanCase

The case directory is then reduced to the basic 0, system and constant directories and the
Allrun script. The case can then be “un-merged” by running the following command.

foamUnMergeCase $FOAM_TUTORIALS/incompressibleFluid/pitzDaily
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This returns the case directort to its initial state, with only the constant directory containing
the physicalProperties.orig file.

As discussed earlier, it is recommended that the Allrun and Allclean scripts contain the
respective foamMergeCase and foamUnMergeCase commands. Therefore, the user should
open the Allrun in an editor and add the foamMergeCase command as shown below.

1 #!/bin/sh
2 cd ${0%/*} || exit 1 # Run from this directory
3
4 # Source tutorial run functions
5 . $WM_PROJECT_DIR/bin/tools/RunFunctions
6
7 foamMergeCase $FOAM_TUTORIALS/incompressibleFluid/pitzDaily
8
9 runApplication blockMesh -dict $FOAM_TUTORIALS/resources/blockMesh/pitzDaily

10 runApplication foamRun

The source case does not include an Allclean script, so the user should copy one using the
foamGet script as follows.

foamGet Allclean

The foamUnMergeCase command should be added after the cleanCase function, otherwise
the un-merging will be incomplete. An example is shown below.

1 #!/bin/sh
2
3 # Run from this directory
4 cd "${0%/*}" || exit 1
5
6 # Source tutorial clean functions
7 . "$WM_PROJECT_DIR/bin/tools/CleanFunctions"
8
9 # ...

10 cleanCase
11
12 foamMergeCase $FOAM_TUTORIALS/incompressibleFluid/pitzDaily

The case can now be run and cleaned by executing the Allrun and Allclean scripts respec-
tively.

./Allrun

./Allclean
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Chapter 5

Mesh generation and conversion

This chapter describes all topics relating to the creation of meshes in OpenFOAM: section 5.1
gives an overview of the way a mesh is be described in OpenFOAM; section 5.2 lists the
basic data files that describe a mesh; section 5.3 discusses mesh boundaries and introduces
boundary conditions; section 5.4 covers the blockMesh utility for generating simple meshes
of blocks of hexahedral cells; section 5.5 covers the snappyHexMesh utility for generating
complex meshes of hexahedral and split-hexahedral cells automatically from triangulated
surface geometries; section 5.7 describes the options for conversion of a mesh that has been
generated by a third-party product into a format that OpenFOAM can read.

5.1 Mesh description
This section provides a specification of the way OpenFOAM describes a mesh. The mesh is
an integral part of the numerical solution and must satisfy certain criteria to ensure a valid,
and hence accurate, solution. OpenFOAM defines a mesh of arbitrary polyhedral cells in
3-D, bounded by arbitrary polygonal faces, i.e. the cells can have an unlimited number of
faces where, for each face, there is no limit on the number of edges nor any restriction on its
alignment. This flexible description of a mesh offers great freedom in mesh generation and
manipulation when the geometry of the domain is complex.

An OpenFOAM mesh begins with points (or vertices). Each point is a location in 3D
space, defined by a vector. The set of points forms a list where each point can be indexed by
its position in the list, starting from zero. The list does not contain points that are unused.

The points are used to from mesh faces, where each face is defined as an ordered list of
points, described by their where a point is referred to by its label. The ordering of point
labels in a face is such that each two neighbouring points are connected by an edge, i.e. you
follow points as you travel around the circumference of the face. The set of faces forms a
list where each face is referred to by its label, representing its position in the list.

Each face can be characterised by a vector whose direction is normal to the face. The
normal vector follows the right-hand rule, i.e. looking towards a face, if the numbering of
the points follows a clockwise path, the normal vector points away from you, as shown in
Figure 5.1. Note that faces can be warped, i.e. the points of the face may not necessarily lie
on a plane. There are two types of face, described below.

• Internal faces, which connect two cells (and it can never be more than two). For each
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Figure 5.1: Face area vector from point numbering on the face

internal face, the ordering of the point labels is such that the face normal points into
the cell with the larger label, i.e. for cells labelled ‘2’ and ‘5’, the normal points into
‘5’.

• Boundary faces, which belong to one cell since they coincide with the boundary of
the domain. A boundary face is therefore addressed by one cell(only) and a boundary
patch. The ordering of the point labels is such that the face normal points outside of
the computational domain.

A cell is a list of faces in arbitrary order. Under normal circumstances, cells must have
the properties listed below.

• The cells must be contiguous,i.e. completely cover the computational domain and must
not overlap one another.

• Every cell must be closed geometrically, such that when all face area vectors are ori-
ented to point outwards of the cell, their sum should equal the zero vector to machine
accuracy;

• Every cell must be closed topologically such that all the edges in a cell are used by
exactly two faces of the cell in question.

The boundary is formed by the boundary faces. It should be closed, i.e. the sum all
boundary face area vectors equates to zero to machine tolerance. It is split into regions
known as patches so that different boundary conditions can be applied to different parts of
the boundary. A patch is defined by the labels of the faces it contains.

5.2 Mesh files
When a mesh is written out by OpenFOAM, the data files go into a polyMesh sub-directory.
Usually the polyMesh directory is written to the the constant directory, but simulations with
dynamic meshes (e.g. mesh motion, refinement, etc.) write the modified meshes into time
directories along with the field data files.
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The data files are based around faces rather than cells. Each face is therefore assigned
an ‘owner’ cell and ‘neighbour’ cell so that the connectivity across a given face can simply
be described by the owner and neighbour cell labels. In the case of boundaries, there is no
neighbour cell. With this in mind, the I/O specification consists of the following files:

points a list of vectors describing the cell vertices, where the first vector in the list represents
vertex 0, the second vector represents vertex 1, etc.;

faces a list of faces, each face being a list of indices to vertices in the points list, where again,
the first entry in the list represents face 0, etc.;

owner a list of owner cell labels, starting with the owner cell of face 0, then 1, 2, . . .

neighbour a list of neighbour cell labels;

boundary a list of patches, containing a dictionary entry for each patch, declared using the
patch name.

Critically, the faces list is ordered so that all internal faces are listed first, followed by the
boundary faces. The boundary faces are themselves ordered so that they begin with the
faces in the first patch, followed by the second, etc. As a consequence the patch entries in
the boundary file are very compact, e.g.

inlet
{

type patch;
nFaces 30;
startFace 24170;

}

Due to the face ordering, the patch faces are simply described by: startFace, the index into
the face list of the first face in the patch; and, nFaces, the number of faces in the patch.

5.3 Mesh boundary
As we saw in section 5.2, the domain boundary is defined by patches within the mesh,
listed within the boundary mesh file. Each patch includes a type entry which can apply
a geometric constraint to the patch. These geometric constraints include conditions that
represent a geometric approximation, e.g. a symmetry plane, and conditions which form
numerical connections between patches, e.g. a cyclic (or periodic) boundary. An example
boundary file is shown below which includes some patches with geometric constraints.

16
17 5
18 (
19 top
20 {
21 type wall;
22 inGroups List<word> 1(wall);
23 nFaces 60;
24 startFace 3510;
25 }
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26 inlet
27 {
28 type patch;
29 nFaces 30;
30 startFace 3570;
31 }
32 outlet
33 {
34 type patch;
35 nFaces 30;
36 startFace 3600;
37 }
38 bottom
39 {
40 type symmetryPlane;
41 inGroups List<word> 1(symmetryPlane);
42 nFaces 60;
43 startFace 3630;
44 }
45 frontAndBack
46 {
47 type empty;
48 inGroups List<word> 1(empty);
49 nFaces 3600;
50 startFace 3690;
51 }
52 )
53
54 // ************************************************************************* //

A type entry is specified for every patch (inlet, outlet, etc.), with types assigned that
include patch, wall, symmetryPlane and empty. Some patches also include an inGroups
entry which is discussed in section 5.3.6.

5.3.1 Generic patch and wall
The patch types specified in the boundary file, which are not associated with a geometric
constraint are the generic patch and wall. The patch type is assigned to open boundaries such
as an inlet or outlet which does not involve any special handling of geometric approximation
or numerical connections.

The wall type also provides no special geometric or numerical handling, but is used for
patches which coincide with a solid wall. The wall ‘tag’ is required by some models, e.g. wall
functions in turbulence modelling which require the distance to nearest wall.

5.3.2 1D/2D and axi-symmetric problems
OpenFOAM is designed as a code for 3D space and defines all meshes as such. However,
1D and 2D and axi-symmetric problems can be simulated in OpenFOAM by generating a
mesh in 3 dimensions and applying special boundary conditions on any patch in the plane(s)
normal to the direction(s) of interest. 1D and 2D problems apply the empty patch type to
the relevant patches. Often the two regions of the boundary, on the ‘front’ and ‘back’ of
the domain, are combined into a single patch, as in the frontAndBack patch in the quoted
example above.

For axi-symmetric cases, the geometry, e.g. a cylinder, is approximated by a wedge-shaped
mesh of small angle (e.g. 1◦) and 1 cell thick, running along the centre line, straddling one
of the coordinate planes, as shown in Figure 5.2. The axi-symmetric wedge planes must
be specified as separate patches of wedge type. The generation of wedge geometries for
axi-symmetric problems is discussed in section 5.4.10.
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wedge aligned along
coordinate plane

<5◦ Axis of symmetry

wedge patch 1

wedge patch 2

Figure 5.2: Axi-symmetric geometry using the wedge patch type.

5.3.3 Symmetry condition
A symmetry plane is a boundary condition that imagines the solution within the domain
is ‘mirrored’ across the boundary. It can therefore be applied reliably to a domain with
a plane of symmetry where the flow is believed to be symmetric across the plane. When
the flow involves something like vortex shedding that breaks symmetry, the condition is less
applicable.

There are two patch types relating to symmetry. Firstly, the symmetryPlane condition
is a pure symmetry plane which can only be applied to a patch which is perfectly planar.
There is then a symmetry condition, which can be applied to any patch, including those that
are non-planar.

5.3.4 Cyclic conditions
The cyclic boundary conditions form a numerical connections between patches that are
physically disconnected. The cyclic condition connects patches which have the same area to
within a tolerance given by the matchTolerance keyword. Each patch specifies the name
of the patch to which it connects through the neighbourPatch keyword. The condition can
transform the field between patches, e.g. by a rotation, so the patches do not require the
same orientation.

OpenFOAM also includes non-conformal coupling (NCC) which connects regions of a
domain with independent meshes. It is and is used particularly for cases when one or more
regions are moving, e.g. to simulate rotating geometry. Non-conformal coupling uses the
nonConformalCyclic condition which are usually generated with the createNonConformalCou-
ples utility. NCC examples can be located by searching for the createNonConformalCouples
utility in Allrun scripts in the tutorials directory, e.g. by running

find $FOAM_TUTORIALS -name Allrun | \
xargs grep -l createNonConformalCouples
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5.3.5 Processor patches
Running applications in parallel is described in section 3.4. It involves decomposition of the
mesh using decomposePar as described in section 3.4.1. Decomposition splits the domain
which creates new patches at the exposed faces. Those patches are assigned the processor
type which forms a numerical connection between sub-domains. Each processor patch entry
in the boundary file includes a myProcNo entry for the processor (sub-domain) index and a
neighbProcNo entry for the index of the matching patch on the sub-domain it connects with.

5.3.6 Patch groups
The boundary file example shows some patches include an inGroups entry, e.g. the top patch:

top
{

type wall;
inGroups List<word> 1(wall);
nFaces 60;
startFace 3510;

}

The inGroups entry is optional. It specifies one or more patch groups to which a patch
can belong. A patch group is specified by a name which the user can choose. Group names
can be used to specify boundary conditions in field files, simplifying the configuration. For
example, if all inlet patches can be included in an inlet group, then one inlet entry can
specify a boundary condition for all the patches.

Every non-generic patch, i.e. one which is not patch type, is included in a patch group of

the same name as its type. For example, a patch of type wall is included in a wall group, one
of type symmetry is included in a symmetry group, etc. The use of group names to specify
boundary conditions in described further in chapter 6.

5.3.7 Constraint type examples
The user can scan the tutorials for mesh generation configuration files, e.g. blockMeshDict
for blockMesh (see section 5.4) and snappyHexMeshDict for snappyHexMesh (see section 5.5,
for examples of different types being used. The following example provides documentation
and lists cases that use the symmetryPlane condition.

foamInfo -a symmetryPlane

The next example searches for snappyHexMeshDict files that specify the wall condition.

find $FOAM_TUTORIALS -name snappyHexMeshDict | \
xargs grep -El "type[\t ]*wall"
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5.4 Mesh generation with the blockMesh utility
This section describes the mesh generation utility, blockMesh, supplied with OpenFOAM.
The blockMesh utility creates parametric meshes with grading and curved edges. The mesh
is generated from a dictionary file named blockMeshDict located in the system directory of a
case. blockMesh reads this dictionary, generates the mesh and writes out the mesh data to
points, faces, cells and boundary files in the polyMesh directory.

The principle behind blockMesh is to decompose the domain geometry into a set of 1 or
more 3D hexahedral blocks. Edges of the blocks can be straight lines, arcs or splines. The
mesh is ostensibly specified as a number of cells in each direction of the block, sufficient
information for blockMesh to generate the mesh data.

5.4.1 Overview of a blockMeshDict file
The blockMeshDict file is a dictionary including keywords described below.

• convertToMeters: scaling factor for the vertex coordinates, e.g. 0.001 scales to mm.

• vertices: list of vertex coordinates, see section 5.4.2.

• edges: optional entry to describe curved geometry, see section 5.4.3.

• blocks: ordered list of vertex labels and mesh size, see section 5.4.4.

• boundary: sub-dictionary of boundary patches, see section 5.4.6.

• defaultPatch: optional entry describing a default patch, see section 5.4.6.

• mergePatchPairs: optional list of patches to be merged, see section 5.4.7.

5.4.2 The vertices
The vertices of the blocks of the mesh are given next as a standard list named vertices.
An example set of vertices, corresponding to a block in Figure 5.3, is provided below.

vertices
(

( 0 0 0 ) // vertex number 0
( 1 0 0.1) // vertex number 1
( 1.1 1 0.1) // vertex number 2
( 0 1 0.1) // vertex number 3
(-0.1 -0.1 1 ) // vertex number 4
( 1.3 0 1.2) // vertex number 5
( 1.4 1.1 1.3) // vertex number 6
( 0 1 1.1) // vertex number 7

);

The convertToMeters keyword specifies a scaling factor by which all vertex coordinates in
the mesh description are multiplied. For example,
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convertToMeters 0.001;

means that all coordinates are multiplied by 0.001, i.e. the values quoted in the blockMeshDict
file are in mm.

5.4.3 The edges
Each edge joining 2 vertex points is assumed to be straight by default. However any edge
may be specified to be curved by entries in a list named edges. The list is optional; if the
geometry contains no curved edges, it may be omitted.

Each entry for a curved edge begins with a keyword specifying the type of curve from
those listed below.

• arc: a circular arc with a single interpolation point or angle + axis (see below).

• spline: spline curve using a list of interpolation points

• polyLine: a set of lines with list of interpolation points

• BSpline: a B-spline curve with list of interpolation points

• line: a straight line, the default which requires no edge specification.

The keyword is then followed by the labels of the 2 vertices that the edge connects.
Following that, interpolation points must be specified through which the edge passes. For
an arc, either of the following is required: a single interpolation point, which the circular arc
will intersect; or an angle and rotation axis for the arc. For spline, polyLine and BSpline,
a list of interpolation points is required. For our example block in Figure 5.3 we specify an
arc edge connecting vertices 1 and 5 as follows through the interpolation point (1.1, 0.0, 0.5):

edges
(

arc 1 5 (1.1 0.0 0.5)
);

For the angle and axis specification of an arc, the syntax is of the form:

edges
(

arc 1 5 25 (0 1 0) // 25 degrees, y-normal
);
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5.4.4 The blocks
The block definitions are contained in a list named blocks. Each block of the geometry
is defined by 8 vertices, one at each corner of a hexahedron. An example block is shown
in Figure 5.3 with each vertex numbered according to the list in section 5.4.2. The edge
connecting vertices 1 and 5 is curved as a reminder that edges can be curved in blockMesh.

Each block has a local coordinate system (x1, x2, x3) that must be right-handed. A right-
handed set of axes is defined such that to an observer looking down the Oz axis, with O
nearest them, the arc from a point on the Ox axis to a point on the Oy axis is in a clockwise
sense.

The local coordinate system is defined by the order in which the vertices are presented
in the block definition according to:

• the axis origin is the first entry in the block definition, vertex 0 in our example;

• the x1 direction is described by moving from vertex 0 to vertex 1;

• the x2 direction is described by moving from vertex 1 to vertex 2;

• vertices 0, 1, 2, 3 define the plane x3 = 0;

• vertex 4 is found by moving from vertex 0 in the x3 direction;

• vertices 5,6 and 7 are similarly found by moving in the x3 direction from vertices 1,2
and 3 respectively.
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Figure 5.3: A single block

An example block specification is shown below.

blocks
(

hex (0 1 2 3 4 5 6 7) // vertex numbers
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(10 10 10) // numbers of cells in each direction
simpleGrading (1 2 3) // cell expansion ratios

);

It begins with the shape identifier of the block (defined in the $FOAM_ETC/cellModels file).
The shape is always hex since the blocks are always hexahedra. The list of vertex numbers
follows, ordered in the manner described above.

The second entry gives the number of cells in each of the x1 x2 and x3 directions for that
block. The third entry gives the cell expansion ratios for each direction in the block. The
expansion ratio enables the mesh to be graded, or refined, in specified directions. The ratio
is that of the width of the end cell δe along one edge of a block to the width of the start cell
δs along that edge, as shown in Figure 5.4.

There are two types of grading specification available in blockMesh. The most common
one is simpleGrading which specifies uniform expansions in the local x1, x2 and x3 directions
respectively with only 3 expansion ratios, e.g.

simpleGrading (1 2 3)

The more complex alternative is edgeGrading. This full cell expansion description gives a
ratio for each edge of the block, numbered according to the scheme shown in Figure 5.3 with
the arrows representing the direction from first cell. . . to last cell e.g.

edgeGrading (1 1 1 1 2 2 2 2 3 3 3 3)

This example is directly equivalent to the simpleGrading example given above because it
uses a ratio of cell widths of 1 along edges 0-3, 2 along edges 4-7 and 3 along 8-11. Note

δs
Expansion ratio = δe

δs δe

Expansion direction

Figure 5.4: Mesh grading along a block edge

that it is possible to generate blocks with fewer than 8 vertices by collapsing one or more
pairs of vertices on top of each other, as described in section 5.4.10.

5.4.5 Multi-grading of a block
Using a single expansion ratio to describe mesh grading permits only “one-way” grading
within a mesh block. In some cases, it reduces complexity and effort to be able to control
grading within separate divisions of a single block, rather than have to define several blocks
with one grading per block. For example, to mesh a channel with two opposing walls and
grade the mesh towards the walls requires three regions: two with grading to the wall with
one in the middle without grading.

OpenFOAM v2.4+ includes multi-grading functionality that can divide a block in an
given direction and apply different grading within each division. This multi-grading is spec-
ified by replacing any single value expansion ratio in the grading specification of the block,
e.g. “1”, “2”, “3” in
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blocks
(

hex (0 1 2 3 4 5 6 7) (100 300 100)
simpleGrading (1 2 3);

);

We will present multi-grading for the following example:

• split the block into 3 divisions in the y-direction, representing 20%, 60% and 20% of
the block length;

• include 30% of the total cells in the y-direction (300) in each divisions 1 and 3 and the
remaining 40% in division 2;

• apply 1:4 expansion in divisions 1 and 3, and zero expansion in division 2.

We can specify this by replacing the y-direction expansion ratio “2” in the example above
with the following:

blocks
(

hex (0 1 2 3 4 5 6 7) (100 300 100)
simpleGrading
(

1 // x-direction expansion ratio
(

(0.2 0.3 4) // 20% y-dir, 30% cells, expansion = 4
(0.6 0.4 1) // 60% y-dir, 40% cells, expansion = 1
(0.2 0.3 0.25) // 20% y-dir, 30% cells, expansion = 0.25 (1/4)

)
3 // z-direction expansion ratio

)
);

Both the fraction of the block and the fraction of the cells are normalized automatically.
They can be specified as percentages, fractions, absolute lengths, etc. and do not need to
sum to 100, 1, etc. The example above can be specified using percentages, e.g.

blocks
(

hex (0 1 2 3 4 5 6 7) (100 300 100)
simpleGrading
(

1
(

(20 30 4) // 20%, 30%...
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(60 40 1)
(20 30 0.25)

)
3

)
);

5.4.6 The boundary
The boundary of the mesh is given in a list named boundary. The boundary is broken into
patches (regions), where each patch in the list has its name as the keyword, which is the
choice of the user, although we recommend something that conveniently identifies the patch,
e.g.inlet; the name is used as an identifier for setting boundary conditions in the field data
files. The patch information is then contained in sub-dictionary with:

• type: the patch type, either a generic patch on which some boundary conditions are
applied or a particular geometric condition, as listed in section 5.3;

• faces: a list of block faces that make up the patch and whose name is the choice of
the user, although we recommend something that conveniently identifies the patch,
e.g.inlet; the name is used as an identifier for setting boundary conditions in the field
data files.

blockMesh collects block faces that are omitted from the patches in the boundary list
and assigns them to a default patch. The default patch can be configured through a
defaultPatch sub-dictionary, including type and name, e.g.

defaultPatch
{

name frontAndBack;
type empty;

}

In absence of any of these entries a default patch uses the name defaultFaces and type
empty by default. This means that for a 2D, the user has the option to omit block faces
lying in the 2D plane, knowing that they will be collected into an empty patch as required.

Returning to the example block in Figure 5.3, if it has an inlet on the left face, an output
on the right face and the four other faces are walls then the patches could be defined as
follows:

boundary // keyword
(

inlet // patch name
{

type patch; // patch type for patch 0
faces
(
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(0 4 7 3) // block face in this patch
);

} // end of 0th patch definition

outlet // patch name
{

type patch; // patch type for patch 1
faces
(

(1 2 6 5)
);

}

walls
{

type wall;
faces
(

(0 1 5 4)
(0 3 2 1)
(3 7 6 2)
(4 5 6 7)

);
}

);

Each block face is defined by a list of 4 vertex numbers. The list can begin with any vertex
but needs to follow a sequence through connecting edges, with no restriction on the direction.

Where a patch type requires additional data in the resulting boundary file, the data is
simply added in the patch entry in blockMeshDict. For example, with the cyclic patch, the
user must specify the name of the related patch through the neighbourPatch keyword, e.g.

left
{

type cyclic;
neighbourPatch right;
faces ((0 4 7 3));

}
right
{

type cyclic;
neighbourPatch left;
faces ((1 5 6 2));

}
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5.4.7 Multiple blocks
A mesh can be created using more than 1 block. In such circumstances, the mesh is created
as described in the preceeding text. The only additional issue is the connection between
blocks. Firstly, if a face of one block also belongs to another block, the block face will not
form an external patch but instead a set of internal faces of the cells in the resulting mesh.

Alternatively if the user wishes to combine block faces which do not exactly match one
another, i.e. through shared vertices, they can first include the block faces within the patches
list. Each pair of patches whose faces are to be merged can then be included in an optional
list named mergePatchPairs. The format of mergePatchPairs is:

mergePatchPairs
(

( <masterPatch> <slavePatch> ) // merge patch pair 0
( <masterPatch> <slavePatch> ) // merge patch pair 1
...

)

See for example $FOAM_TUTORIALS/multiphaseEuler/LBend. The pairs of patches are in-
terpreted such that the first patch becomes the master and the second becomes the slave.
The rules for merging are as follows:

• the faces of the master patch remain as originally defined, with all vertices in their
original location;

• the faces of the slave patch are projected onto the master patch where there is some
separation between slave and master patch;

• the location of any vertex of a slave face might be adjusted by blockMesh to eliminate
any face edge that is shorter than a minimum tolerance;

• if patches overlap as shown in Figure 5.5, each face that does not merge remains as
an external face of the original patch, on which boundary conditions must then be
applied;

• if all the faces of a patch are merged, then the patch itself will contain no faces and is
removed.

The consequence is that the original geometry of the slave patch will not necessarily be
completely preserved during merging. Therefore in a case, say, where a cylindrical block
is being connected to a larger block, it would be wise to the assign the master patch to
the cylinder, so that its cylindrical shape is correctly preserved. There are some additional
recommendations to ensure successful merge procedures:

• in 2 dimensional geometries, the size of the cells in the third dimension, i.e. out of the
2D plane, should be similar to the width/height of cells in the 2D plane;

• it is inadvisable to merge a patch twice, i.e. include it twice in mergePatchPairs;

• where a patch to be merged shares a common edge with another patch to be merged,
both should be declared as a master patch.
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patch 1

patch 2

region of internal connecting faces
region of external boundary faces

Figure 5.5: Merging overlapping patches

5.4.8 Projection of vertices, edges and faces
blockMesh can be configured to create body fitted meshes using projection of vertices, edges
and/or faces onto specified geometry. The functionality can be used to mesh spherical and
cylindrical geometries such as pipes and vessels conveniently. The user can specify within
the blockMeshDict file within an optional geometry dictionary with the same format as used
in the snappyHexMeshDict file. For example to specify a cylinder using the built in geometric
type the user could configure with the following:
geometry
{

cylinder
{

type searchableCylinder;
point1 (0 -4 0);
point2 (0 4 0);
radius 0.7;

}
};

The user can then project vertices, edges and/or faces onto the cylinder surface with the
project keyword using example syntax shown below:
vertices
(

project (-1 -0.1 -1) (cylinder)
project ( 1 -0.1 -1) (cylinder)
...

);

edges
(

project 0 1 (cylinder)
...

);

faces
(
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project (0 4 7 3) cylinder
...

);

The use of this functionality is demonstrated in tutorials which can be located by searching
for the project keyword in all the blockMeshDict files by:

find $FOAM_TUTORIALS -name blockMeshDict | xargs grep -l project

5.4.9 Naming vertices, edges, faces and blocks
Vertices, edges, faces and blocks can be named in the configuration of a blockMeshDict file,
which can make it easier to manage more complex examples. It is done simply using the
name keyword. The following syntax shows naming using the example for projection in the
previous subsection:
vertices
(

name v0 project (-1 -0.1 -1) (cylinder)
name v1 project ( 1 -0.1 -1) (cylinder)
...

);

edges
(

project v0 v1 (cylinder)
...

);

When a name is provided for a given entity, it can be used to replace the index. In the
example about, rather than specify the edge using vertex indices 0 and 1, the names v0 and
v1 are used.

5.4.10 Blocks with fewer than 8 vertices
It is possible to collapse one or more pair(s) of vertices onto each other in order to create
a block with fewer than 8 vertices. The most common example of collapsing vertices is
when creating a 6-sided wedge shaped block for 2-dimensional axi-symmetric cases that use
the wedge patch type described in section 5.3.2. The process is best illustrated by using a
simplified version of our example block shown in Figure 5.6. Let us say we wished to create
a wedge shaped block by collapsing vertex 7 onto 4 and 6 onto 5. This is simply done by
exchanging the vertex number 7 by 4 and 6 by 5 respectively so that the block numbering
would become:

hex (0 1 2 3 4 5 5 4)

The same applies to the patches with the main consideration that the block face contain-
ing the collapsed vertices, previously (4 5 6 7) now becomes (4 5 5 4). This is a block
face of zero area which creates a patch with no faces in the polyMesh, as the user can see in
a boundary file for such a case. The patch should be specified as empty in the blockMeshDict
and the boundary condition for any fields should consequently be empty also.
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Figure 5.6: Creating a wedge shaped block with 6 vertices

5.4.11 Running blockMesh
As described in section 3.3, blockMesh can be run from within the case directory by:

blockMesh

Like many utilities, it can also be run using a configuration file named differently from
blockMeshDict. Several examples in the tutorials directory for example use the pitzDaily
geometry. They use a common blockMesh configuration file named pitzDaily in the $FOAM-
_TUTORIALS/resources/blockMesh. The meshes for these cases are generated using the
-dict option by

blockMesh -dict $FOAM_TUTORIALS/resources/blockMesh/pitzDaily

5.5 Mesh generation with snappyHexMesh
This section describes the mesh generation utility, snappyHexMesh, supplied with Open-
FOAM. The snappyHexMesh utility generates 3-dimensional meshes containing hexahedra
(hex) and split-hexahedra (split-hex) automatically from triangulated surface geometries,
or tri-surfaces, in Stereolithography (STL) or Wavefront Object (OBJ) format. The mesh
approximately conforms to the surface by iteratively refining a starting mesh and morphing
the resulting split-hex mesh to the surface. An optional phase will shrink back the resulting
mesh and insert cell layers. The specification of mesh refinement level is very flexible and
the surface handling is robust with a pre-specified final mesh quality. It runs in parallel with
a load balancing step every iteration.

5.5.1 The mesh generation process of snappyHexMesh
The process of generating a mesh using snappyHexMesh will be described using the schematic
in Figure 5.7. The objective is to mesh a rectangular shaped region (shaded grey in the figure)
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STL surface

Figure 5.7: Schematic 2D meshing problem for snappyHexMesh

surrounding an object described by a tri-surface, e.g. typical for an external aerodynamics
simulation. Note that the schematic is 2-dimensional to make it easier to understand, even
though the snappyHexMesh is a 3D meshing tool.

In order to run snappyHexMesh, the user requires the following:

• one or more tri-surface files located in a constant/geometry sub-directory of the case
directory;

• a background hex mesh which defines the extent of the computational domain and a
base level mesh density; typically generated using blockMesh, discussed in section 5.5.2.

• a snappyHexMeshDict dictionary, with appropriate entries, located in the system sub-
directory of the case.

The snappyHexMeshDict dictionary includes: switches at the top level that control the
various stages of the meshing process; and, individual sub-directories for each process. The
entries are listed below.

• castellatedMesh: to switch on creation of the castellated mesh.

• snap: to switch on surface snapping stage.

• addLayers: to switch on surface layer insertion.

• mergeTolerance: merge tolerance as fraction of bounding box of initial mesh.

• geometry: sub-dictionary of all surface geometry used.

• castellatedMeshControls: sub-dictionary of controls for castellated mesh.

• snapControls: sub-dictionary of controls for surface snapping.

• addLayersControls: sub-dictionary of controls for layer addition.

• meshQualityControls: sub-dictionary of controls for mesh quality.
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Figure 5.8: Initial mesh generation in snappyHexMesh meshing process

All the geometry used by snappyHexMesh is specified in a geometry sub-dictionary in
the snappyHexMeshDict dictionary. The geometry can be specified through a tri-surface or
bounding geometry entities in OpenFOAM. An example is given below:
geometry
{

duct // User defined region name
{

type triSurfaceMesh;
file "duct.obj"; // surface geometry OBJ file
regions
{

leftOpening // Named region in the OBJ file
{

name inlet; // User-defined patch name
} // otherwise given sphere1_secondSolid

}
}

box // User defined region name
{

type searchableBox; // region defined by bounding box
min (1.5 1 -0.5);
max (3.5 2 0.5);

}

sphere // User defined region name
{

type searchableSphere; // region defined by bounding sphere
centre (1.5 1.5 1.5);
radius 1.03;

}
};

5.5.2 Creating the background hex mesh
Before snappyHexMesh is executed the user must create a background mesh of hexahedral
cells that fills the entire region within by the external boundary as shown in Figure 5.8. This
can be done simply using blockMesh. The following criteria must be observed when creating
the background mesh:

• the mesh must consist purely of hexes;
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Figure 5.9: Cell splitting by feature edge in snappyHexMesh meshing process

• the cell aspect ratio should be approximately 1, at least near surfaces at which the
subsequent snapping procedure is applied, otherwise the convergence of the snapping
procedure is slow, possibly to the point of failure;

• there must be at least one intersection of a cell edge with the tri-surface, i.e. a mesh
of one cell will not work.

5.5.3 Cell splitting at feature edges and surfaces
Cell splitting is performed according to the specification supplied by the user in the castel-
latedMeshControls sub-dictionary in the snappyHexMeshDict. The entries for castellatedMesh-
Controls are presented below.

• insidePoint: location vector inside the region to be meshed; vector must not coincide
with a cell face either before or during refinement.

• maxLocalCells: max number of cells per processor during refinement.

• maxGlobalCells: overall cell limit during refinement (i.e. before removal).

• minRefinementCells: if minRefinementCells ≥ number of cells to be refined, surface
refinement stops.

• nCellsBetweenLevels: number of buffer layers of cells between successive levels of
refinement (typically set to 3).

• resolveFeatureAngle: applies maximum level of refinement to cells that can see
intersections whose angle exceeds resolveFeatureAngle (typically set to 30).

• features: list of features for refinement.

• refinementSurfaces: dictionary of surfaces for refinement.

• refinementRegions: dictionary of regions for refinement.
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Figure 5.10: Cell splitting by surface in snappyHexMesh meshing process

The splitting process begins with cells being selected according to specified edge features first
within the domain as illustrated in Figure 5.9. The features list in the castellatedMeshCon-
trols sub-dictionary permits dictionary entries containing a name of an edgeMesh file and the
level of refinement, e.g.:
features
(

{
file "features.eMesh"; // file containing edge mesh
level 2; // level of refinement

}
);

The edgeMesh containing the features can be extracted from the tri-surface file using the
surfaceFeatures utility which specifies the tri-surface and controls such as included angle
through a surfaceFeaturesDict configuration file, examples of which can be found in several
tutorials and at $FOAM_ETC/caseDicts/surface/surfaceFeaturesDict. The utility is simply
run by executing the following in a terminal

surfaceFeatures

Following feature refinement, cells are selected for splitting in the locality of specified sur-
faces as illustrated in Figure 5.10. The refinementSurfaces dictionary in castellatedMesh-
Controls requires dictionary entries for each STL surface and a default level specification of
the minimum and maximum refinement in the form (<min> <max>). The minimum level
is applied generally across the surface; the maximum level is applied to cells that can see
intersections that form an angle in excess of that specified by resolveFeatureAngle.

The refinement can optionally be overridden on one or more specific region of an STL
surface. The region entries are collected in a regions sub-dictionary. The keyword for each
region entry is the name of the region itself and the refinement level is contained within a
further sub-dictionary. An example is given below:
refinementSurfaces
{

duct
{
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Figure 5.11: Cell removal in snappyHexMesh meshing process

Figure 5.12: Cell splitting by region in snappyHexMesh meshing process

level (2 2); // default (min max) refinement for whole surface
regions
{

leftOpening
{

level (3 3); // optional refinement for secondSolid region
}

}
}

}

5.5.4 Cell removal

Once the feature and surface splitting is complete a process of cell removal begins. Cell
removal requires one or more regions enclosed entirely by a bounding surface within the
domain. The region in which cells are retained are simply identified by a location vector
within that region, specified by the insidePoint keyword in castellatedMeshControls. Cells
are retained if, approximately speaking, 50% or more of their volume lies within the region.
The remaining cells are removed accordingly as illustrated in Figure 5.11.
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5.5.5 Cell splitting in specified regions
Those cells that lie within one or more specified volume regions can be further split as
illustrated in Figure 5.12 by a rectangular region shown by dark shading. The refinement-
Regions sub-dictionary in castellatedMeshControls contains entries for refinement of the vol-
ume regions specified in the geometry sub-dictionary. A refinement mode is applied to each
region which can be:

• inside refines inside the volume region;

• outside refines outside the volume region

• distance refines according to distance to the surface; and can accommodate different
levels at multiple distances with the levels keyword.

For the refinementRegions, the refinement level is specified by the level keyword for
inside and outside refinement. For distance refinement, the keyword is levels (plural!)
which contains list of entries with the format (<distance> <level>). Examples are shown
below:
refinementRegions
{

box
{

mode inside;
level 4; // refinement level 4

}

sphere
{ // refinement level 5 within 1.0 m

mode distance; // refinement level 3 within 2.0 m
levels ((1.0 5) (2.0 3)); // levels must be ordered nearest first

}
}

5.5.6 Cell splitting based on local span
Refinement of cells can also be specified to guarantee a specified number of cells across the
span between opposing surfaces. This refinement option can ensure that there are sufficient
cells to resolve the flow in a region of the domain, e.g. across a narrow pipe. The method re-
quires closeness data to be provided on the surface geometry. The closeness can be calculated
by the surfaceFeatures utility with the following entry in the surfaceFeaturesDict file:
surfaces
(

"pipeWall.obj"
);

closeness
{

pointCloseness yes;
}

This writes closeness data to a file named pipeWall.closeness.internalPointCloseness into
the constant/geometry directory. The closeness is then be used for span-based refinement by
the addition of an entry in the refinementRegions sub-dictionary in snappyHexMeshDict,
e.g.:
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refinementRegions
{

pipeWall
{

mode insideSpan;
level (1000 2);
cellsAcrossSpan 40;

}
}

The example shows a refinement region inside the pipeWall surface in which a maximum
2 levels of refinement is guaranteed within a specified distance of 1000 from the wall. The
span-based refinement, specified by the insideSpan mode, enables the user to guarantee at
least 40 cellsAcrossSpan, i.e. across the pipe diameter.

5.5.7 Snapping to surfaces
The next stage of the meshing process involves moving cell vertex points onto surface geom-
etry to remove the jagged castellated surface from the mesh. The process is:

1. displace the vertices in the castellated boundary onto the STL surface;

2. solve for relaxation of the internal mesh with the latest displaced boundary vertices;

3. find the vertices that cause mesh quality parameters to be violated;

4. reduce the displacement of those vertices from their initial value (at 1) and repeat from
2 until mesh quality is satisfied.

The method uses the settings in the snapControls sub-dictionary in snappyHexMeshDict, listed
below.

• nSmoothPatch: number of patch smoothing iterations before finding correspondence
to surface (typically 3).

• tolerance: ratio of distance for points to be attracted by surface feature point or
edge, to local maximum edge length (typically 2.0).

• nSolveIter: number of mesh displacement relaxation iterations (typically 30-100).

• nRelaxIter: maximum number of snapping relaxation iterations (typically 5).

An example is illustrated in the schematic in Figure 5.13 (albeit with mesh motion that
looks slightly unrealistic).

5.5.8 Mesh layers
The mesh output from the snapping stage may be suitable for the purpose, although it
can produce some irregular cells along boundary surfaces. There is an optional stage of
the meshing process which introduces additional layers of hexahedral cells aligned to the
boundary surface as illustrated by the dark shaded cells in Figure 5.14.

The process of mesh layer addition involves shrinking the existing mesh from the bound-
ary and inserting layers of cells, broadly as follows:
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Figure 5.13: Surface snapping in snappyHexMesh meshing process

Figure 5.14: Layer addition in snappyHexMesh meshing process

1. the mesh is projected back from the surface by a specified thickness in the direction
normal to the surface;

2. solve for relaxation of the internal mesh with the latest projected boundary vertices;

3. check if validation criteria are satisfied otherwise reduce the projected thickness and
return to 2; if validation cannot be satisfied for any thickness, do not insert layers;

4. if the validation criteria can be satisfied, insert mesh layers;

5. the mesh is checked again; if the checks fail, layers are removed and we return to 2.

The layer addition procedure uses the settings in the addLayersControls sub-dictionary in
snappyHexMeshDict; entries are listed below. The user has the option of 4 different layer
thickness parameters — expansionRatio, finalLayerThickness, firstLayerThickness,
thickness — from which they must specify 2 only; more than 2, and the problem is over-
specified.

• layers: dictionary specifying layers to be inserted.
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• relativeSizes: switch that sets whether the specified layer thicknesses are relative
to undistorted cell size outside layer or absolute.

• expansionRatio: expansion factor for layer mesh, increase in size from one layer to
the next.

• finalLayerThickness: thickness of layer furthest from the wall, usually in combina-
tion with relative sizes according to the relativeSizes entry.

• firstLayerThickness: thickness of layer nearest the wall, usually in combination with
absolute sizes according to the relativeSizes entry.

• thickness: total thickness of all layers of cells, usually in combination with absolute
sizes according to the

• relativeSizes entry.

• minThickness: minimum thickness of cell layer, either relative or absolute (as above).

• nGrow: number of layers of connected faces that are not grown if points do not get
extruded; helps convergence of layer addition close to features.

• featureAngle: angle above which surface is not extruded.

• nRelaxIter: maximum number of snapping relaxation iterations (typcially 5).

• nSmoothSurfaceNormals: number of smoothing iterations of surface normals (typically
1).

• nSmoothNormals: number of smoothing iterations of interior mesh movement direction
(typically 3).

• nSmoothThickness: smooth layer thickness over surface patches (typically 10).

• maxFaceThicknessRatio: stop layer growth on highly warped cells (typically 0.5).

• maxThicknessToMedialRatio: reduce layer growth where ratio thickness to medial
distance is large (typically 0.3)

• minMedianAxisAngle: angle used to pick up medial axis points (typically 90).

• nBufferCellsNoExtrude: create buffer region for new layer terminations (typically
0).

• nLayerIter: overall max number of layer addition iterations (typically 50).

• nRelaxedIter: max number of iterations after which the controls in the relaxed sub
dictionary of meshQuality are used (typically 20).

The layers sub-dictionary contains entries for each patch on which the layers are to be
applied and the number of surface layers required. The patch name is used because the
layers addition relates to the existing mesh, not the surface geometry; hence applied to a
patch, not a surface region. An example layers entry is as follows:
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layers
{

sphere1_firstSolid
{

nSurfaceLayers 1;
}
maxY
{

nSurfaceLayers 1;
}

}

5.5.9 Mesh quality controls
The mesh quality is controlled by the entries in the meshQualityControls sub-dictionary in
snappyHexMeshDict; entries are listed below.

• maxNonOrtho: maximum non-orthogonality allowed (degrees, typically 65).

• maxBoundarySkewness: max boundary face skewness allowed (typically 20).

• maxInternalSkewness: max internal face skewness allowed (typically 4).

• maxConcave: max concaveness allowed (typically 80).

• minFlatness: ratio of minimum projected area to actual area (typically 0.5)

• minTetQuality: minimum quality of tetrahedral cells from cell decomposition; gen-
erally deactivated by setting large negative number since v5.0 when new barycentric
tracking was introduced, which could handle negative tets.

• minVol: minimum cell pyramid volume (typically 1e-13, large negative number dis-
ables).

• minArea: minimum face area (typically -1).

• minTwist: minimum face twist (typically 0.05).

• minDeterminant: minimum normalised cell determinant; 1 = hex; ≤ 0 = illegal cell
(typically 0.001).

• minFaceWeight: 0→0.5 (typically 0.05).

• minVolRatio: 0→1.0 (typically 0.01).

• minTriangleTwist: > 0 for Fluent compatibility (typically -1).

• nSmoothScale: number of error distribution iterations (typically 4).

• errorReduction: amount to scale back displacement at error points (typically 0.75).

• relaxed: sub-dictionary that can include modified values for the above keyword entries
to be used when nRelaxedIter is exceeded in the layer addition process.
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5.6 Mesh Zones
This section describes mesh zones and some popular tools which use zones as part of the
meshing process. A zone is a list (or collection) of points or faces or cells within a mesh
which is identifiable by a name. The list contains exclusively the indices of points, faces
or cells, meaning there are three types of zone, represented in OpenFOAM by the classes
pointZone, faceZone and cellZone. A unique name is required for each zone of a particular
type, but the same name can be used for one pointZone, faceZone and cellZone.

A cellZone has many uses. One example is that it can define a region of the mesh to which
a source term, e.g. a heat source, can be applied using an fvModel. Another is to represent
a region of a mesh over which some quantity is calculated, e.g. the average temperature. A
cellZone is often used to identify cells for some kind of modification, e.g. refinement, within
a mesh generation process.

A faceZone can optionally include information about the orientation of the faces, in
addition to their indices. The information is contained in a flipMap, whose purpose is to
provide a consistent orientation for all faces, e.g. to make all faces “point” in a downstream
direction. The flipMap contains a boolean (true/false) for each face. The sign (+/−)
of normal vectors of faces marked true can then be flipped so that they are oriented in a
consistent direction with normal vectors of faces marked false.

A pointZone is much less commonly used that a cellZone and faceZone. It is generally
used for a prescribed mesh motion, in which some or all points in a mesh are re-positioned.

5.6.1 Creating zones
A zone can be created in two ways. First, it can be created as part of the meshing process,
when the zone is included within the mesh within a relevant file in the polyMesh directory.
The relevant files are cellZones, faceZones and pointZones, which can each contain a set of
one or more zones (in fact, a file can exist but contain zero zones).

These “static” zones can be created by a mesh generation tool, e.g. blockMesh or snap-
pyHexMesh. Other utilities can also create them, especially the dedicated createZones tool,
where the zones are configured through a createZonesDict file.

A zone can also be generated “dynamically” within an application, especially during a
CFD simulation itself, i.e. within foamRun or foamMultiRun. These zones usually remain
unchanged, following their generation at the beginning of a simulation. Alternatively, if a
zone represents a fixed region of space, and the mesh is moving, the list of indices describing
a zone can be updated dynamically during a simulation.

Dynamic zones are configured through a zonesGenerator file. The file can both include
the configuration of new zones and may also involve “static” zones which have already been
created as part of the mesh.

5.6.2 Zone generators
Zones can be configured in a zonesGenerator file, createZonesDict file and other configuration
files for utilities described in following sections. There are several types of zoneGenerator,
which are listed in this section. For detailed information about their configuration, the user
can simply run the foamInfo script, e.g.
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foamInfo union

Zones are always updated when there are topological changes within the mesh, e.g. meshing
refinement and unrefinement. When the mesh moves, users have the option to retain the
same elements (cells, faces, points) within the zone, such that the zone moves with the
mesh. Alternatively, they can update the elements of a zone during a simulation by setting
the moveUpdate switch to on/yes/true. This allows the zones to represent regions fixed in
space with the mesh moving within it.

The first set of zone generators describe volume regions within the domain. They can
create a zone of cells, faces or points contained within the volume region. Cells and faces
are included when their centres are within the volume; points are included which are within
the volume. The volume zone generators are listed below.

• annulus: selects cells, faces or points inside an annulus.

• box: selects cells, faces or points inside a box.

• cylinder: selects cells, faces or points inside a cylinder.

• hemisphere: selects cells, faces or points inside a hemisphere.

• insideSurface: selects cells, faces or points inside a closed surface described by a
surface geometry file, e.g. surface.obj.

• sphere: selects cells, faces or points inside a sphere.

• truncatedCone: selects cells, faces or points inside a truncated cone.

An example configuration of a hemisphere zone generator is presented below (taking from
running “foamInfo hemisphere”).

hemisphere1
{

type hemisphere;
zoneType cell;

centre (-0.001 0.001 0);
axis (0 1 0);
radius 0.001;

}

There are then zone generators which are specific to cells, faces and points. The biggest
set of these is the zone generators for faces which are listed below.

• face: creates a face zone from point, cell and face zones provided by a list of zoneGen-
erators.

• flip: inverts the flipMap of a face zone from a given zoneGenerator.
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• normal: selects faces from a given zoneGenerator that are aligned with a specified
normal direction.

• orient: sets the face orientation flipMap of a face zone.

• patch: creates a face zone from a set of patches.

• plane: creates a face zone from faces, whose vector connecting its adjacent cell centres,
intersects a specified plane.

• surface: creates a face zone from faces whose vector, , whose vector connecting its
adjacent cell centres, intersects a surface geometry, e.g. surface.obj.

As discussed in the introduction to this section, a face zone can optionally include a
flipMap. A flipMap is required, for example, to calculate the flow rate through an area
described by a face zone by summing the fluxes ϕf on all the faces in the face zone. That
calculation is only meaningful if the face area vectors, used to calculate ϕf, point in a con-
sistent direction. To ensure consistency, the sign of ϕf is inverted for faces marked true in
the flipMap.

Specific cell and point zone generators are listed below.

• cellZone: selects and/or generates a cell zone for a tool that requires one, e.g. a
functionObject, fvModel, fvConstraint or utility application.

• containsPoints: creates a cell zone containing the specified points.

• point: creates a point zone from face, cell and point zones provided by list of zone-
Generators.

The final set of zone generators create, that manipulate and combine zones, are listed
below. When used to create a face zone, they have specific rules about creating a flipMap.

• all: creates a zone using all cells, faces or points of the mesh; no flipMap for a face
zone.

• clear: clears all zones from a mesh.

• difference: selects cell, face or point elements in the first specified zone and removes
the elements in subsequent specified zones.

• intersection: selects cell, face or point elements common to all the specified zones;
can contain a flipMap if one face zone includes one.

• invert: selects cell, face or point elements in the mesh and removes the elements from
the specified zones.

• periodic: activates a specified set of zones for a given period with optional repetition.

• remove: removes specified zones from a mesh.

• set: converts a legacy cell, face or point set to an equivalent zone; no flipMap a the
face zone.
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• union: selects all cell, face or point elements from all the specified zones; can contain
a flipMap if all face zones include one.

• write: writes existing zones to the mesh, e.g. for visualisation.

5.6.3 The createZones utility
The createZones utility creates “static” zones that form part of a mesh. There are many
example cases in OpenFOAM that use createZones that can be inspected to learn about
its use. One example is the coolingSphere case (in $FOAM_TUTORIALS/multiRegion/CHT)
which generates a cell zone that is subsequently used to form a separate mesh region for a
solid sphere. The configuration from the createPatchDict file is shown below.

16 solid
17 {
18 type sphere;
19 zoneType cell;
20
21 centre (0 0 0);
22 radius $blockMeshDict!geometry/sphere/radius;
23 }
24
25 // ************************************************************************* //

It generates a zone named solid using the sphere zone generator. The zone type is a cell
zone. The remaining parameters describe the sphere, namely the centre and radius. The
latter is read from the blockMeshDict file using a macro expansion, described in section 4.2.10.

The mesh and cell zone are generated by running blockMesh and createZones respectively.
blockMesh first produces the standard mesh files in the constant/polyMesh. createZones then
generates an additional cellZones file in that directory, containing the list of cell indices that
make up the zone.

5.6.4 The refineMesh utility
The refineMesh utility refines cells in a mesh. The refinement can be applied to cells in the
entire mesh or to specified regions of the mesh. The refinement is applied by splitting cells,
which can be applied in all three directions or on one or two specified directions.

To apply refinement across the entire mesh and in all three directions, refineMesh can be
run using the -all option, i.e.

refineMesh -all

Otherwise, the region of the mesh and/or refinement directions must be configured using a
refineMeshDict file.

There are many example cases in OpenFOAM which include refineMeshDict files. One is
the pipeCyclic case (in $FOAM_TUTORIALS/incompressibleFluid) whose refineMeshDict file is
shown below.

16
17 hexRef8 yes;
18
19 zone
20 {
21 type box;
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22 box (-1e6 -1e6 -1e6)(1e6 -0.15 0.3);
23 }
24
25 // ************************************************************************* //

The file includes a zone entry to describe a cell zone configured with a box zone generator.
The refinement is specified through the hexRef8 switch, set to on. hexRef8 refines cells in
all directions, splitting each selected cell 2× 2× 2. It is the method used by snappyHexMesh
which keeps a record of the refinement history in a refinementHistory file in the polyMesh
directory.

The DTCHull case (in $FOAM_TUTORIALS/incompressibleVoF) is another example that
uses the refineMesh utility. It is a case of ship hydrodynamics which generates an initial
mesh which has high aspect ratio cells, stretched in the horizontal plane, in the vicinity of
the water-air interface. Before meshing the ship hull with snappyHexMesh, the aspect ratio
of cells is gradually reduced from the far field to the hull, by successive refinements of cells
in the horizontal directions. The refineMeshDict file for this case is shown below.

16
17 coordinates
18 {
19 type global;
20
21 e1 (1 0 0);
22 e2 (0 1 0);
23
24 directions (e1 e2);
25 }
26
27 zones
28 {
29 level1
30 {
31 type box;
32 box (-10 -6 -3) (10 0 3);
33 }
34
35 level2
36 {
37 type box;
38 box (-5 -3 -2.5) (9 0 2);
39 }
40
41 level3
42 {
43 type box;
44 box (-3 -1.5 -1) (8 0 1.5);
45 }
46
47 level4
48 {
49 type box;
50 box (-2 -1 -0.6) (7 0 1);
51 }
52
53 level5
54 {
55 type box;
56 box (-1 -0.6 -0.3) (6.5 0 0.8);
57 }
58
59 level6
60 {
61 type box;
62 box (-0.5 -0.55 -0.15) (6.25 0 0.65);
63 }
64 }
65
66 // ************************************************************************* //
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It first describes the refinement directions by the coordinates sub-dictionary. The co-
ordinates must be specified by two orthogonal directions described by the e1 and e2 vectors.
The directions parameter then lists the refinement directions, which could theoretically
include e3, the vector calculated orthogonal to e1 and e2 (forming a right-handed set of
axes).

The refinement is then specified in zones described in the a zones sub-dictionary. Six
box zones are listed from largest to smallest. Refinement is applied successively to each zone
so that it produces six levels of refinement in the final box, five levels in the region described
by the fifth box beyond the final box, and so on.

5.6.5 The createPatch utility
The createPatch utility creates new patches from collections of boundary faces. It enables
users to make changes to the patch configuration in a mesh, often in the final stages of a
meshing workflow. The utility is configured by a createPatchDict file.

There are some examples in OpenFOAM which use createPatch. Most of them create a
patch from faces defined by a face zone. The hotRoomComfort example (in $FOAM_TUT-
ORIALS/fluid) contains a createPatchDict file which creates an inlet and an outlet patch
in a mesh whose boundary initially contains a single wall patch. The createPatchDict file is
given below, showing each patch is generated from a box zone.

16 patches
17 {
18 inlet
19 {
20 // Dictionary to construct new patch from
21 patchInfo
22 {
23 type patch;
24 }
25
26 // Construct from zone
27 constructFrom zone;
28
29 // Generate zone
30 zone
31 {
32 type box;
33 box (-0.001 0.25 1.1)(0.001 0.75 1.3);
34 }
35 }
36
37 outlet
38 {
39 // Dictionary to construct new patch from
40 patchInfo
41 {
42 type patch;
43 }
44
45 // Construct from zone
46 constructFrom zone;
47
48 // Generate zone
49 zone
50 {
51 type box;
52 box (1.75 2.999 0.3)(2.25 3.001 0.5);
53 }
54 }
55 }
56
57 // ************************************************************************* //
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The potentialFreeSurfaceMovingOscillatingBox case (in $FOAM_TUTORIALS/isothermalFluid)
uses the createPatchDict shown below.

16 patches
17 {
18 floatingObjectBottom
19 {
20 // Dictionary to construct new patch from
21 patchInfo
22 {
23 type wall;
24 }
25
26 // Construct patch from a faceZone
27 constructFrom zone;
28
29 zone
30 {
31 type normal;
32
33 normal (0 1 0);
34 tol 0.01;
35
36 floatingObject
37 {
38 type patch;
39 patch floatingObject;
40 }
41 }
42 }
43 }
44
45 // ************************************************************************* //

This example uses a normal zone generator applied to a zone generated from patch. The
patch zone generation is configured within the normal zone configuration, resulting in a
zone containing faces, oriented with the specified normal direction, that are extracted from
the patch.

5.6.6 The subsetMesh utility
The subsetMesh utility creates a new mesh which is a subset of an existing mesh. It is
commonly used in a meshing workflow which creates a mesh, then uses subsetMesh to remove
part of the mesh.

The floatingObject tutorial (in $FOAM_TUTORIALS/incompressibleVoF) provides a good
example of its use. A mesh is initially created of a box-shaped domain. A floating object is
then introduced corresponding to a zone configured in subsetMeshDict, shown below.

16
17 zone
18 {
19 type box;
20 select outside;
21 box (0.35 0.35 0.1) (0.65 0.55 0.6);
22 }
23
24 patch floatingObject;
25
26 // ************************************************************************* //

The zone is configured by defining a box with the addition of the optional selection keyword
which selects cells outside the box. Consequently, the new mesh becomes the original mesh
without the cells contained with the box, which represents the floating object. A patch
entry provides a name for the patch formed by the faces exposed by removal of the cells.
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5.7 Mesh conversion
The user can generate meshes using other packages and convert them into the format that
OpenFOAM uses. There are numerous mesh conversion utilities listed in section 3.7.3. Some
of the more popular mesh converters are listed below and their use is presented in this section.
fluentMeshToFoam reads a Fluent.msh mesh file, working for both 2-D and 3-D cases;

starToFoam reads STAR-CD/PROSTAR mesh files.

gambitToFoam reads a GAMBIT.neu neutral file;

ideasToFoam reads an I-DEAS mesh written in ANSYS.ans format;

cfx4ToFoam reads a CFX mesh written in .geo format;

5.7.1 fluentMeshToFoam
Fluent writes mesh data to a single file with a .msh extension. The file must be written
in ASCII format, which is not the default option in Fluent. It is possible to convert single-
stream Fluentmeshes, including the 2 dimensional geometries. In OpenFOAM, 2 dimensional
geometries are currently treated by defining a mesh in 3 dimensions, where the front and
back plane are defined as the empty boundary patch type. When reading a 2 dimensional
Fluent mesh, the converter automatically extrudes the mesh in the third direction and adds
the empty patch, naming it frontAndBackPlanes.

The following features should also be observed.
• The OpenFOAM converter will attempt to capture the Fluent boundary condition

definition as much as possible; however, since there is no clear, direct correspondence
between the OpenFOAM and Fluent boundary conditions, the user should check the
boundary conditions before running a case.

• Creation of axi-symmetric meshes from a 2 dimensional mesh is currently not supported
but can be implemented on request.

• Multiple material meshes are not permitted. If multiple fluid materials exist, they will
be converted into a single OpenFOAM mesh; if a solid region is detected, the converter
will attempt to filter it out.

• Fluent allows the user to define a patch which is internal to the mesh, i.e. consists of
the faces with cells on both sides. Such patches are not allowed in OpenFOAM and
the converter will attempt to filter them out.

• There is currently no support for embedded interfaces and refinement trees.
The procedure of converting a Fluent.msh file is first to create a new OpenFOAM case

by creating the necessary directories/files: the case directory containing a controlDict file in
a system subdirectory. Then at a command prompt the user should execute:

fluentMeshToFoam <meshFile>

where <meshFile> is the name of the .msh file, including the full or relative path.
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5.7.2 starToFoam
This section describes how to convert a mesh generated on the STAR-CD code into a form
that can be read by OpenFOAM mesh classes. The mesh can be generated by any of the
packages supplied with STAR-CD, i.e.PROSTAR, SAMM, ProAM and their derivatives. The
converter accepts any single-stream mesh including integral and arbitrary couple matching
and all cell types are supported. The features that the converter does not support are:

• multi-stream mesh specification;

• baffles, i.e. zero-thickness walls inserted into the domain;

• partial boundaries, where an uncovered part of a couple match is considered to be a
boundary face;

• sliding interfaces.

For multi-stream meshes, mesh conversion can be achieved by writing each individual stream
as a separate mesh and reassemble them in OpenFOAM.

OpenFOAM adopts a policy of only accepting input meshes that conform to the fairly
stringent validity criteria specified in section 5.1. It will simply not run using invalid meshes
and cannot convert a mesh that is itself invalid. The following sections describe steps that
must be taken when generating a mesh using a mesh generating package supplied with STAR-
CD to ensure that it can be converted to OpenFOAM format. To avoid repetition in the
remainder of the section, the mesh generation tools supplied with STAR-CD will be referred
to by the collective name STAR-CD.

We strongly recommend that the user run the STAR-CD mesh checking tools before at-
tempting a starToFoam conversion and, after conversion, the checkMesh utility should be run
on the newly converted mesh. Alternatively, starToFoam may itself issue warnings containing
PROSTAR commands that will enable the user to take a closer look at cells with problems.
Problematic cells and matches should be checked and fixed before attempting to use the
mesh with OpenFOAM. Remember that an invalid mesh will not run with OpenFOAM, but
it may run in another environment that does not impose the validity criteria.

Some problems of tolerance matching can be overcome by the use of a matching tolerance
in the converter. However, there is a limit to its effectiveness and an apparent need to increase
the matching tolerance from its default level indicates that the original mesh suffers from
inaccuracies.

When mesh generation in is completed, remove any extraneous vertices and compress
the cells boundary and vertex numbering, assuming that fluid cells have been created and
all other cells are discarded. This is done with the following PROSTAR commands:

CSET NEWS FLUID
CSET INVE

The CSET should be empty. If this is not the case, examine the cells in CSET and adjust
the model. If the cells are genuinely not desired, they can be removed using the PROSTAR
command:
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CDEL CSET

Similarly, vertices will need to be discarded as well:

CSET NEWS FLUID
VSET NEWS CSET
VSET INVE

Before discarding these unwanted vertices, the unwanted boundary faces have to be collected
before purging:

CSET NEWS FLUID
VSET NEWS CSET
BSET NEWS VSET ALL
BSET INVE

If the BSET is not empty, the unwanted boundary faces can be deleted using:

BDEL BSET

At this time, the model should contain only the fluid cells and the supporting vertices,
as well as the defined boundary faces. All boundary faces should be fully supported by the
vertices of the cells, if this is not the case, carry on cleaning the geometry until everything
is clean.

By default, STAR-CD assigns wall boundaries to any boundary faces not explicitly asso-
ciated with a boundary region. The remaining boundary faces are collected into a default
boundary region, with the assigned boundary type 0. OpenFOAM deliberately does not have
a concept of a default boundary condition for undefined boundary faces since it invites hu-
man error, e.g. there is no means of checking that we meant to give all the unassociated
faces the default condition.

Therefore all boundaries for each OpenFOAM mesh must be specified for a mesh to be
successfully converted. The default boundary needs to be transformed into a real one using
the procedure described below:

1. Plot the geometry with Wire Surface option.

2. Define an extra boundary region with the same parameters as the default region 0
and add all visible faces into the new region, say 10, by selecting a zone option in
the boundary tool and drawing a polygon around the entire screen draw of the model.
This can be done by issuing the following commands in PROSTAR:

RDEF 10 WALL
BZON 10 ALL

3. We shall remove all previously defined boundary types from the set. Go through the
boundary regions:
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BSET NEWS REGI 1
BSET NEWS REGI 2
... 3, 4, ...

Collect the vertices associated with the boundary set and then the boundary faces
associated with the vertices (there will be twice as many of them as in the original
set).

BSET NEWS REGI 1
VSET NEWS BSET
BSET NEWS VSET ALL
BSET DELE REGI 1
REPL

This should give the faces of boundary Region 10 which have been defined on top of
boundary Region 1. Delete them with BDEL BSET. Repeat these for all regions.

Renumber and check the model using the commands:

CSET NEW FLUID
CCOM CSET

VSET NEWS CSET
VSET INVE (Should be empty!)
VSET INVE
VCOM VSET

BSET NEWS VSET ALL
BSET INVE (Should be empty also!)
BSET INVE
BCOM BSET

CHECK ALL
GEOM

Internal PROSTAR checking is performed by the last two commands, which may reveal
some other unforeseeable error(s). Also, take note of the scaling factor because PROSTAR
only applies the factor for STAR-CD and not the geometry. If the factor is not 1, use the
scalePoints utility in OpenFOAM.

Once the mesh is completed, place all the integral matches of the model into the couple
type 1. All other types will be used to indicate arbitrary matches.

CPSET NEWS TYPE INTEGRAL
CPMOD CPSET 1

The components of the computational grid must then be written to their own files. This is
done using PROSTAR for boundaries by issuing the command

BWRITE
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by default, this writes to a .23 file (versions prior to 3.0) or a .bnd file (versions 3.0 and
higher). For cells, the command

CWRITE

outputs the cells to a .14 or .cel file and for vertices, the command

VWRITE

outputs to file a .15 or .vrt file. The current default setting writes the files in ASCII format.
If couples are present, an additional couple file with the extension .cpl needs to be written
out by typing:

CPWRITE

After outputting to the three files, exit PROSTAR or close the files. Look through the
panels and take note of all STAR-CD sub-models, material and fluid properties used – the
material properties and mathematical model will need to be set up by creating and editing
OpenFOAM dictionary files.

The procedure of converting the PROSTAR files is first to create a new OpenFOAM case
by creating the necessary directories. The PROSTAR files must be stored within the same
directory and the user must change the file extensions: from .23, .14 and .15 (below STAR-
CD version 3.0), or .pcs, .cls and .vtx (STAR-CD version 3.0 and above); to .bnd, .cel and .vrt
respectively.

The .vrt file is written in columns of data of specified width, rather than free format. A
typical line of data might be as follows, giving a vertex number followed by the coordinates:

19422 -0.105988957 -0.413711881E-02 0.000000000E+00

If the ordinates are written in scientific notation and are negative, there may be no space
between values, e.g.:

19423 -0.953953117E-01-0.338810333E-02 0.000000000E+00

The starToFoam converter reads the data using spaces to delimit the ordinate values and
will therefore object when reading the previous example. Therefore, OpenFOAM includes a
simple script, foamCorrectVrt to insert a space between values where necessary, i.e. it would
convert the previous example to:

19423 -0.953953117E-01 -0.338810333E-02 0.000000000E+00

The foamCorrectVrt script should therefore be executed if necessary before running the starTo-
Foam converter, by typing:

foamCorrectVrt <file>.vrt
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The translator utility starToFoam can now be run to create the boundaries, cells and
points files necessary for a OpenFOAM run:

starToFoam <meshFilePrefix>

where <meshFilePrefix> is the name of the prefix of the mesh files, including the full or
relative path. After the utility has finished running, OpenFOAM boundary types should be
specified by editing the boundary file by hand.

5.7.3 gambitToFoam
GAMBIT writes mesh data to a single file with a .neu extension. The procedure of converting
a GAMBIT.neu file is first to create a new OpenFOAM case, then at a command prompt,
the user should execute:

gambitToFoam <meshFile>

where <meshFile> is the name of the .neu file, including the full or relative path.
The GAMBIT file format does not provide information about type of the boundary patch,

e.g. wall, symmetry plane, cyclic. Therefore all the patches have been created as type patch.
Please reset after mesh conversion as necessary.

5.7.4 ideasToFoam
OpenFOAM can convert a mesh generated by I-DEAS but written out in ANSYS format as a
.ans file. The procedure of converting the .ans file is first to create a new OpenFOAM case,
then at a command prompt, the user should execute:

ideasToFoam <meshFile>

where <meshFile> is the name of the .ans file, including the full or relative path.

5.7.5 cfx4ToFoam
CFX writes mesh data to a single file with a .geo extension. The mesh format in CFX is block-
structured, i.e. the mesh is specified as a set of blocks with glueing information and the vertex
locations. OpenFOAM will convert the mesh and capture the CFX boundary condition
as best as possible. The 3 dimensional ‘patch’ definition in CFX, containing information
about the porous, solid regions etc. is ignored with all regions being converted into a single
OpenFOAM mesh. CFX supports the concept of a ‘default’ patch, where each external face
without a defined boundary condition is treated as a wall. These faces are collected by the
converter and put into a defaultFaces patch in the OpenFOAM mesh and given the type
wall; of course, the patch type can be subsequently changed.

Like, OpenFOAM 2 dimensional geometries in CFX are created as 3 dimensional meshes
of 1 cell thickness. If a user wishes to run a 2 dimensional case on a mesh created by CFX,
the boundary condition on the front and back planes should be set to empty; the user should
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ensure that the boundary conditions on all other faces in the plane of the calculation are
set correctly. Currently there is no facility for creating an axi-symmetric geometry from a 2
dimensional CFX mesh.

The procedure of converting a CFX.geo file is first to create a new OpenFOAM case, then
at a command prompt, the user should execute:

cfx4ToFoam <meshFile>

where <meshFile> is the name of the .geo file, including the full or relative path.

5.8 Mapping fields between different geometries
The mapFields utility maps one or more fields relating to a given geometry onto the corre-
sponding fields for another geometry. It is completely generalised in so much as there does
not need to be any similarity between the geometries to which the fields relate. However, for
cases where the geometries are consistent, mapFields can be executed with a special option
that simplifies the mapping process.

For our discussion of mapFields we need to define a few terms. First, we say that the
data is mapped from the source to the target. The fields are deemed consistent if the
geometry and boundary types, or conditions, of both source and target fields are identical.
The field data that mapFields maps are those fields within the time directory specified by
startFrom/startTime in the controlDict of the target case. The data is read from the
equivalent time directory of the source case and mapped onto the equivalent time directory
of the target case.

5.8.1 Mapping consistent fields
A mapping of consistent fields is simply performed by executing mapFields on the (target)
case using the -consistent command line option as follows:

mapFields <source dir> -consistent

5.8.2 Mapping inconsistent fields
When the fields are not consistent, as shown in Figure 5.15, mapFields requires a mapFields-
Dict dictionary in the system directory of the target case. The following rules apply to the
mapping:

• the field data is mapped from source to target wherever possible, i.e. in our example
all the field data within the target geometry is mapped from the source, except those
in the shaded region which remain unaltered;

• the patch field data is left unaltered unless specified otherwise in the mapFieldsDict
dictionary.
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The mapFieldsDict dictionary contain two lists that specify mapping of patch data. The first
list is patchMap that specifies mapping of data between pairs of target and source patches
that are geometrically coincident, as shown in Figure 5.15. The list contains each pair of
names of target patch (first) and source patch (second). The second list is cuttingPatches
that contains names of target patches whose values are to be mapped from the source internal
field through which the target patch cuts. In the situation where the target patch only cuts
through part of the source internal field, e.g. bottom left target patch in our example, those
values within the internal field are mapped and those outside remain unchanged. An example

Internal target patches:
can be mapped using cuttingPatches

Target field geometry
Source field geometry

mapped using patchMap
Coincident patches: can be

Figure 5.15: Mapping inconsistent fields

mapFieldsDict dictionary is shown below:
16
17 patchMap (lid movingWall);
18
19 cuttingPatches ();
20
21
22 // ************************************************************************* //

mapFields <source dir>

5.8.3 Mapping parallel cases
If either or both of the source and target cases are decomposed for running in parallel,
additional options must be supplied when executing mapFields:

-parallelSource if the source case is decomposed for parallel running;
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-parallelTarget if the target case is decomposed for parallel running.
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Chapter 6

Boundary conditions

Boundary conditions are specified in field files, e.g. p, U, in time directories. The struc-
ture of these files is introduced in sections 2.1.4 and 4.2.9. They include three entries:
dimensions for the dimensional units; internalField for the initial internal field values;
and, boundaryField where the boundary conditions are specified. The boundaryField re-
quires an entry for each patch in the mesh. The patches are specified in the boundary file;
below is a sample file from a 2D incompressibleFluid example in OpenFOAM.

5
(

outlet
{

type patch;
nFaces 320;
startFace 198740;

}
up
{

type symmetry;
inGroups List<word> 1(symmetry);
nFaces 760;
startFace 199060;

}
hole
{

type wall;
inGroups List<word> 1(wall);
nFaces 1120;
startFace 199820;

}
frontAndBack
{

type empty;
inGroups List<word> 1(empty);
nFaces 200000;
startFace 200940;

}
inlet
{

type patch;
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nFaces 320;
startFace 400940;

}
)

The corresponding pressure field file, p, is shown below.
16 dimensions [0 2 -2 0 0 0 0];
17
18 internalField uniform 0;
19
20 boundaryField
21 {
22 inlet
23 {
24 type zeroGradient;
25 }
26 outlet
27 {
28 type fixedValue;
29 value uniform 0;
30 }
31 up
32 {
33 type symmetry;
34 }
35 hole
36 {
37 type zeroGradient;
38 }
39 frontAndBack
40 {
41 type empty;
42 }
43 }
44
45 // ************************************************************************* //

The boundaryField is a sub-dictionary containing an entry for every patch in the mesh.
Each entry begins with the patch name and configures the boundary condition through
entries in a sub-dictionary. A type entry is required for every patch which specifies the type
of boundary condition. The examples above include zeroGradient and fixedValue conditions
corresponding to generic patches defined in the boundary file. They also include symmetry
and empty types corresponding to equivalent constraint patches, e.g. the up patch is defined
as symmetry in the mesh and uses a symmetry condition in the field file.

For details about the main boundary conditions used in OpenFOAM, refer to Chapter 4
of Notes on Computational Fluid Dynamics: General Principles.

6.1 Patch selection in field files
There are three different ways an entry can be specified for a patch in the boundaryField of
a field file: 1) by patch name; 2) by group name; 3) matching a patch name with a regular
expression. They are listed here in order of precedence which is obeyed if multiple entries
are valid of a particular patch. The different specifications can be illustrated by imagining
a mesh with the following patches.

• inlet: a generic patch.

• lowerWall and upperWall: two wall patches.
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• outletSmall, outletMedium and outletLarge: three outlet patches of generic type,
all in a patch group named outlet.

Then imagine the following boundaryField for a field, e.g. p, corresponding to the patches
above.

boundaryField
{

inlet
{

type zeroGradient;
}
".*Wall"
{

type zeroGradient;
}
outletSmall
{

type fixedValue;
value uniform 1;

}
outlet
{

type fixedValue;
value uniform 0;

}
}

In this example, the inlet field entry is read for the inlet patch, following rule 1 above
(matching patch name). Similarly, the outletSmall entry will be read for the patch of the
same name.

The outletMedium and outletLarge patches do not have matching entries in the field
file, so they instead the outlet entry will be applied (rule 2), since it matches the group
name to which the patches belong. Note that the outletSmall patch does not use the
outlet entry because a matching patch entry takes precedence over a matching group entry.

Finally, the lowerWall and upperWall match the regular expression ".*Wall". Regular
expressions are described in section 4.2.13; they must be included in double quotations ". . . ".
The ".*" component matches any expression (including nothing), so matches the wall patch
names here. The regular expression could use word grouping to provide a more precise match
to the patch names, e.g.

"(lower|upper)Wall"
{

type zeroGradient;
}

Alternatively a patch entry could cover the wall patches taking advantage of the fact that
every non-generic patch is automatically placed in a group of the same name as its type, as
discussed in section 5.3.6. In this case, all wall patches are placed in a group named wall, so
the following entry would be read for both patches.
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wall
{

type zeroGradient;
}

6.2 Geometric constraints
Section 5.3 describes the mesh boundary, which is split into patches and written in the mesh
boundary file. Each patch includes a type entry which can be specified as a generic patch,
a wall or a geometric constraint, e.g. empty, symmetry, cyclic etc.

For each geometric constraint type for a patch in the mesh, there is an equivalent bound-
ary condition type that must be applied to the same patch in the boundaryField of a field
file. The type names in the mesh and boundaryField are the same, e.g. the symmetry
boundary condition must be applied to a symmetry patch.

To simplify the configuration of field files, OpenFOAM includes a file named setCon-
straintTypes in the $FOAM_ETC/caseDicts of the installation. The setConstraintTypes file
contains the following entries.

9 cyclic
10 {
11 type cyclic;
12 }
13
14 cyclicSlip
15 {
16 type cyclicSlip;
17 }
18
19 nonConformalCyclic
20 {
21 type nonConformalCyclic;
22 value $internalField;
23 }
24
25 nonConformalError
26 {
27 type nonConformalError;
28 }
29
30 empty
31 {
32 type empty;
33 }
34
35 processor
36 {
37 type processor;
38 value $internalField;
39 }
40
41 processorCyclic
42 {
43 type processorCyclic;
44 value $internalField;
45 }
46
47 nonConformalProcessorCyclic
48 {
49 type nonConformalProcessorCyclic;
50 value $internalField;
51 }
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52
53 symmetryPlane
54 {
55 type symmetryPlane;
56 }
57
58 symmetry
59 {
60 type symmetry;
61 }
62
63 wedge
64 {
65 type wedge;
66 }
67
68 internal
69 {
70 type internal;
71 }
72
73
74 // ************************************************************************* //

The file exploits the fact that a patch which is a geometric constraint is automatically
included in a group of the constraint name, e.g. a symmetry patch is in a group named
symmetry. The entries therefore set a boundary type for each constraint group (to the name
of the group). All constraint conditions are covered by an entry for each condition.

The user can then include this file inside the boundaryField of their field files. Since
the file is in the $FOAM_ETC directory it can be included using the special #includeEtc
directive, e.g. in the boundaryField entry below.

boundaryField
{

inlet
{

type zeroGradient;
}

outlet
{

type fixedValue;
value uniform 0;

}

wall
{

type zeroGradient;
}

#includeEtc "caseDicts/setConstraintTypes"
}

With the setContraintTypes file included in the field files, the only patches that generally
need to be configured are: the generic patches, corresponding to open boundaries; and, wall
patches.
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6.3 Basic boundary conditions
The main basic boundary condition types available in OpenFOAM are summarised below
using a patch field named Ψ. This is not a complete list; for all types see $FOAM_SRC/fin-
iteVolume/fields/fvPatchFields/basic.

• fixedValue: value of Ψ is specified by value.

• fixedGradient: normal gradient of Ψ (∂Ψ/∂n) is specified by gradient.

• zeroGradient: normal gradient of Ψ is zero.

• calculated: patch field Ψ calculated from other patch fields.

• mixed: mixed fixedValue/ fixedGradient condition depending on valueFraction (0 ≤
valueFraction ≤ 1) where

valueFraction =

1 corresponds to Ψ = refValue,
0 corresponds to ∂Ψ/∂n = refGradient.

(6.1)

• directionMixed: mixed condition with tensorial valueFraction, to allow different con-
ditions in normal and tangential directions of a vector patch field, e.g. fixedValue in
the tangential direction, zeroGradient in the normal direction.

6.4 Derived boundary conditions
There are numerous more complex boundary conditions derived from the basic conditions.
For example, many complex conditions are derived from fixedValue, where the value is cal-
culated by a function of other patch fields, time, geometric information, etc. Some other
conditions derived from mixed/directionMixed switch between fixedValue and fixedGradient
(usually with a zero gradient).

The available boundary conditions can be listed with foamToC using the -scalarBCs and
-vectorBCs options, corresponding to boundary conditions for scalar fields and vector fields,
respectively. For example, for scalar fields, boundary conditions are listed by

foamToC -scalarBCs

These produce long lists which the user can scan through. If the user wants more information
of a particular condition, they can run the foamInfo script which provides a description of
the boundary condition and lists example cases where it is used. For example, for the
totalPressure boundary condition, run the following.

foamInfo totalPressure

In the following sections we will highlight some particular important, commonly used bound-
ary conditions.
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6.4.1 The inlet/outlet condition
The inletOutlet condition is one derived from mixed, which switches between zeroGradient
when the fluid flows out of the domain at a patch face, and fixedValue, when the fluid is
flowing into the domain. For inflow, the inlet value is specified by an inletValue entry. A
good example of its use can be seen in the damBreakLaminar tutorial, where it is applied to
the phase fraction on the upper atmosphere boundary. Where there is outflow, the condition
is well posed, where there is inflow, the phase fraction is fixed with a value of 0, corresponding
to 100% air.

16
17 dimensions [];
18
19 internalField uniform 0;
20
21 boundaryField
22 {
23 #includeEtc "caseDicts/setConstraintTypes"
24
25 wall
26 {
27 type zeroGradient;
28 }
29
30 atmosphere
31 {
32 type inletOutlet;
33 inletValue $internalField;
34 value $internalField;
35 }
36 }
37
38
39 // ************************************************************************* //

6.4.2 Entrainment boundary conditions
The combination of the totalPressure condition on pressure and pressureInletOutletVelocity
on velocity is extremely common for patches where some inflow occurs and the inlet flow
velocity is not known. The conditions are used on the atmosphere boundary in the damBreak
tutorial, inlet conditions where only pressure is known, outlets where flow reversal may occur,
and where flow in entrained, e.g. on boundaries surrounding a jet through a nozzle.

The idea behind this combination is that the condition is a standard combination in the
case of outflow, but for inflow the normal velocity is allowed to find its own value. Under
these circumstances, a rapid rise in velocity presents a risk of instability, but the rise is
moderated by the reduction of inlet pressure, and hence driving pressure gradient, as the
inflow velocity increases.

The totalPressure condition specifies:

p =

p0 for outflow
p0 − 1

2ρ|U
2| for inflow (dynamic pressure, subsonic)

(6.2)

where the user specifies p0 through the p0 keyword.
The entrainmentPressure condition also exists which is arguably more robust than total-

Pressure by using the normal component of velocity Un ≡ n •U in the calculation for inflow,
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i.e.

p =

p0 for outflow
p0 − 1

2ρ|U
2
n| for inflow (dynamic pressure, subsonic)

(6.3)

Solver applications which include buoyancy effects, though a gravitational force ρg (per
unit volume) source term, tend to solve for a pressure field pρgh = p − ρ|g|∆h, where the
hydrostatic component is subtracted based on a height ∆h above some reference. For such
solvers, e.g. interFoam, an equivalent prghTotalPressure condition is applied which specifies:

pρgh =

p0 for outflow
p0 − ρ|g|∆h− 1

2ρ|U
2| for inflow (dynamic pressure, subsonic)

(6.4)

The pressureInletOutletVelocity condition specifies zeroGradient at all times, except on
the tangential component which is set to fixedValue for inflow, with the tangentialVelocity
defaulting to 0.

The specification of these boundary conditions in the U and p_rgh files, in the damBreak
case, are shown below.

16
17 dimensions [0 1 -1 0 0 0 0];
18
19 internalField uniform (0 0 0);
20
21 boundaryField
22 {
23 #includeEtc "caseDicts/setConstraintTypes"
24
25 wall
26 {
27 type noSlip;
28 }
29
30 atmosphere
31 {
32 type pressureInletOutletVelocity;
33 value $internalField;
34 }
35 }
36
37
38 // ************************************************************************* //
16
17 dimensions [1 -1 -2 0 0 0 0];
18
19 internalField uniform 0;
20
21 boundaryField
22 {
23 #includeEtc "caseDicts/setConstraintTypes"
24
25 wall
26 {
27 type fixedFluxPressure;
28 value $internalField;
29 }
30
31 atmosphere
32 {
33 type prghTotalPressure;
34 p0 $internalField;
35 }
36 }
37
38
39 // ************************************************************************* //
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6.4.3 Fixed flux pressure
In the above example, it can be seen that all the wall boundaries use a boundary condition
named fixedFluxPressure. This boundary condition is used for pressure in situations where
zeroGradient is generally used, but where body forces such as gravity and surface tension are
present in the solution equations. The condition adjusts the gradient accordingly.

6.4.4 Time-varying boundary conditions
There are several boundary conditions for which some input parameters are specified by
a function of time (using Function1 functionality) class. The available functions from the
Function1 can be listed by the following command.

find $FOAM_SRC/finiteVolume/fields/fvPatchFields -type f -name "*.H" |\
xargs grep -l Function1 | xargs dirname | sort

They include conditions such as uniformFixedValue, which is a fixedValue condition which
applies a single value which is a function of time through a uniformValue keyword entry.

The Function1 is specified by a keyword following the uniformValue entry, followed by
parameters that relate to the particular function. The Function1 options can be listed by
foamToC by

foamToC -table scalarFunction1

The most relevant functions are those in the core OpenFOAM library which can be filtered
using grep

foamToC -table scalarFunction1 | grep OpenFOAM

Most of those function objects are described below.

• constant: constant value.

• table: inline list of (time value) pairs; interpolates values linearly between times.

• tableFile: as above, but with data supplied in a separate file.

• square: square-wave function.

• squarePulse: single square pulse.

• sine: sine function.

• one and zero: constant one and zero values.

• polynomial: polynomial function using a list (coeff exponent) pairs.

• coded: function specified by user coding.
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• scale: scales a given value function by a scalar scale function; both entries can be
themselves Function1; scale function is often a ramp function (below), with value
controlling the ramp value.

• linearRamp, quadraticRamp, exponentialSqrRamp, halfCosineRamp, quarterCo-
sineRamp and quarterSineRamp: monotonic ramp functions which ramp from 0 to
1 over specified duration.

• reverseRamp: reverses the values of a ramp function, e.g. from 1 to 0.

• add: adds two Function1s together.

• normalise: scales a given Function1 so that the integral over time equals 1 (the integral
value can be changed with the scale Function1).

• repeat: repeats a given ’value’ function with a given period or frequency, and with an
optional shift along the time axis.

There are some other function objects, more commonly to describe properties as a function
of something, e.g. temperature.

• uniformTable: Tabulated property function that linearly interpolates between given
values.

• nonUniformTable: Non-uniform tabulated property function that linearly interpolates
between the values.

Examples or a time-varying inlet for a scalar are shown below.
inlet
{

type uniformFixedValue;
uniformValue constant 2;

}

inlet
{

type uniformFixedValue;
uniformValue table ((0 0) (10 2));

}

inlet
{

type uniformFixedValue;
uniformValue polynomial ((1 0) (2 2)); // = 1*t^0 + 2*t^2

}

inlet
{

type uniformFixedValue;
uniformValue
{

type tableFile;
format csv;
nHeaderLine 4; // number of header lines
refColumn 0; // time column index
componentColumns (1); // data column index
separator ","; // optional (defaults to ",")
mergeSeparators no; // merge multiple separators
file "dataTable.csv";
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}
}

inlet
{

type uniformFixedValue;
uniformValue
{

type square;
frequency 10;
amplitude 1;
scale 2; // Scale factor for wave
level 1; // Offset

}
}

inlet
{

type uniformFixedValue;
uniformValue
{

type sine;
frequency 10;
amplitude 1;
scale 2; // Scale factor for wave
level 1; // Offset

}
}

input // ramp from 0 -> 2, from t = 0 -> 0.4
{

type uniformFixedValue;
uniformValue
{

type scale;
scale linearRamp;
start 0;
duration 0.4;
value 2;

}
}

input // ramp from 2 -> 0, from t = 0 -> 0.4
{

type uniformFixedValue;
uniformValue
{

type scale;
scale reverseRamp;
ramp linearRamp;
start 0;
duration 0.4;
value 2;

}
}

inlet // pulse with value 2, from t = 0 -> 0.4
{

type uniformFixedValue;
uniformValue
{

type scale;
scale squarePulse
start 0;
duration 0.4;
value 2;

}
}
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inlet
{

type uniformFixedValue;
uniformValue coded;
name pulse;
codeInclude
#{

#include "mathematicalConstants.H"
#};

code
#{

return scalar
(

0.5*(1 - cos(constant::mathematical::twoPi*min(x/0.3, 1)))
);

#};
}
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Chapter 7

Post-processing

This chapter describes options for post-processing with OpenFOAM. Post-processing in its
most general sense involves data processing (processing results) and visualisation. The func-
tionality for data processing is described in sections 7.2, 7.3 and 7.4. For visualisation, Open-
FOAM relies on ParaView, a third-party open source application described in the example
cases in chapter 2, with some additional information provided in the following section 7.1.
Other methods of visualisation using third party software are described in section 7.5.

7.1 ParaView/paraFoam graphical user interface (GUI)
OpenFOAM includes a native reader module to visualise data with ParaView, an open-
source, visualisation application. The module comprises of the PVFoamReader and vtkPV-
Foam libraries, which currently supports version 5.10.1 of ParaView. It is recommended
that this version of ParaView is used, although it is possible that the latest binary re-
lease of the software will run adequately. Further details about ParaView can be found
at http://www.paraview.org.

ParaView uses the Visualisation Toolkit (VTK) as its data processing and rendering engine
and can therefore read any data in VTK format. OpenFOAM includes a variety of tools which
can write data in VTK and other supported formats, which can be read directly by ParaView.
Entire case data can be converted to VTK using the foamToVTK utility if the user wishes to
process their results without the OpenFOAM reader.

In summary, we recommend the reader module for ParaView as the primary visualisation
option for OpenFOAM. Alternatively OpenFOAM data can be converted into VTK format
to be read by ParaView or any other VTK-based graphics tools.

7.1.1 Overview of ParaView/paraFoam
paraFoam is a script that launches ParaView using the reader module supplied with Open-
FOAM. It is executed like any of the OpenFOAM utilities either by the single command
from within the case directory or with the -case option with the case path as an argument,
e.g.:

paraFoam -case <caseDir>

http://www.paraview.org
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Figure 7.1: The ParaView window

ParaView is launched and opens the window shown in Figure 7.1. The case is controlled
from the left panel, which contains the following:

• The Pipeline Browser lists the modules opened in ParaView, where the selected modules
are highlighted in blue and the graphics for the given module can be enabled/disabled
by clicking the eye button alongside;

• The Properties panel contains the input selections for the case, such as times, regions
and fields; it includes the Display panel that controls the visual representation of the
selected module, e.g. colours;

• Other panels can be selected from the View menu, including the Information panel
which gives case statistics such as mesh geometry and size.

ParaView operates a tree-based structure in which data can be filtered from the top-level
case module to create sets of sub-modules. For example, a contour plot of, say, pressure could
be a sub-module of the case module which contains all the pressure data. The strength of
ParaView is that the user can create a number of sub-modules and display whichever ones
they need to create the desired image or animation. For example, they may add some solid
geometry, mesh and velocity vectors, to a contour plot of pressure, switching any of the items
on and off as necessary.

The general operation of the system is based on the user making a selection and then
clicking the green Apply button in the Properties panel. The additional buttons are: the
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Check to enable ParaView to display
polyhedral cells and polygonal faces correctly

The user can select the internalField
region and/or individual patches

The user can select the fields
read into the case module

Figure 7.2: The Properties panel for the case module

Reset button which can be used to reset the settings if necessary; and, the Delete button
that will delete the active module.

7.1.2 The Parameters panel
The Properties window for the case module includes the Parameters panel that contains the
settings for mesh, fields and global controls. The controls are described in Figure 7.2. The
user can select mesh and field data which is loaded for all time directories into ParaView.
The buttons in the Current Time Controls and VCR Controls toolbars then select the
time data to be displayed, as shown is section 7.1.4.

As with any operation in ParaView, the user must click Apply after making any changes
to any selections. The Apply button is highlighted in green to alert the user if changes have
been made but not accepted. This method of operation has the advantage of allowing the
user to make a number of selections before accepting them, which is particularly useful in
large cases where data processing is best kept to a minimum.
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Outline, surface, wireframe, surface with edges

Colour surface by. . .

Set colour map range / appearance
Change image opacity

e.g. to make transparent

Figure 7.3: The Display panel

If new data is written to time directories while the user is running ParaView, the user
must load the additional time directories by checking the Refresh Times button. Where there
are occasions when the case data changes on file and ParaView needs to load the changes, the
user can also toggle the Cache Mesh button in the Parameters panel and apply the changes.

7.1.3 The Display panel
The Properties window contains the Display panel that includes the settings for visualising
the data for a given case module. The following points are particularly important:

• the data range may not be automatically updated to the max/min limits of a field, so
the user should take care to select Rescale at appropriate intervals, in particular after
loading the initial case module;

• clicking the Edit Color Map button, brings up a window in which there are two panels:

1. The Color Scale panel in which the colours within the scale can be chosen. The
standard blue to red colour scale for CFD can be selected by clicking Choose
Preset and searching for Blue to Red Rainbow and selecting.
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2. The Color Legend panel has a toggle switch for a colour bar legend and contains
settings for the layout of the legend, e.g. font.

• the underlying mesh can be represented by selecting Wireframe in the Representation
menu of the Style panel;

• the geometry, e.g. a mesh (if Wireframe is selected), can be visualised as a single colour
by selecting Solid Color from the Color By menu and specifying the colour in the
Set Ambient Color window;

• the image can be made translucent by editing the value in the Opacity text box (1 =
solid, 0 = invisible) in the Style panel.

7.1.4 The button toolbars
ParaView duplicates functionality from pull-down menus at the top of the main window
and the major panels, within the toolbars below the main pull-down menus. The displayed
toolbars can be selected from Toolbars in the main View menu. The default layout with
all toolbars is shown in Figure 7.4 with each toolbar labelled. The function of many of the
buttons is clear from their icon and, with tooltips enabled in the Help menu, the user is
given a concise description of the function of any button.

main controls VCR controls time selector

common and data analysis filters camera controls
visual representation

ruler centre/axes

Figure 7.4: Toolbars in ParaView

7.1.5 Manipulating the view
This section describes operations for setting and manipulating the view in ParaView. Firstly,
the View Settings are available in the Render View panel below the Display panel in the
Properties window. Settings that are generally important only appear when the user checks
the gearwheel button at the top of the Properties window, next to the search bar. These
advanced properties include setting the background colour, where white is often a preferred
choice for creating images for printed and website material.

The Lights button opens detailed lighting controls within the Light Kit panel. A separate
Headlight panel controls the direct lighting of the image. Checking the Headlight button with
white light colour of strength 1 seems to help produce images with strong bright colours,
e.g. with an isosurface.
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The Camera Parallel Projection is the usual choice for CFD, especially for 2D cases, and
so should generally be checked. Other settings include Cube Axes which displays axes on the
selected object to show its orientation and geometric dimensions.

The general Settings are selected from the Edit menu, which opens a general Options
window with General, Camera, Render View Color Arrays and Color Palette menu items.

The General panel controls some default behaviour of ParaView. In particular, there is an
Auto Apply button that enables ParaView to accept changes automatically without clicking
the green Apply button in the Properties window. For larger cases, this option is generally
not recommended: the user does not generally want the image to be re-rendered between
each of a number of changes he/she selects, but be able to apply a number of changes to be
re-rendered in their entirety once.

The Render View panel contains level of detail (LOD) which controls the rendering of
the image while it is being manipulated, e.g. translated, resized, rotated; lowering the levels
set by the sliders, allows cases with large numbers of cells to be re-rendered quickly during
manipulation.

The Camera panel includes control settings for 3D and 2D movements. This presents the
user with a map of rotation, translate and zoom controls using the mouse in combination
with Shift- and Control-keys. The map can be edited to suit by the user.

7.1.6 Contour plots
A contour plot is created by selecting Contour from the Filter menu at the top menu
bar. The filter acts on a given module so that, if the module is the 3D case module itself,
the contours will be a set of 2D surfaces that represent a constant value, i.e. isosurfaces.
The Properties panel for contours contains an Isosurfaces list that the user can edit, most
conveniently by the New Range window. The chosen scalar field is selected from a pull down
menu.

Very often a user will wish to create a contour plot across a plane rather than producing
isosurfaces. To do so, the user must first use the Slice filter to create the cutting plane,
on which the contours can be plotted. The Slice filter allows the user to specify a cutting
Plane, Box or Sphere in the Slice Type menu by a center and normal/radius respectively.
The user can manipulate the cutting plane like any other using the mouse.

The user can then run the Contour filter on the cut plane to generate contour lines.

7.1.7 Vector plots
Vector plots are created using the Glyph filter. The filter reads the field selected in Vectors
and offers a range of Glyph Types for which the Arrow provides a clear vector plot images.
Each glyph has a selection of graphical controls in a panel which the user can manipulate to
best effect.

The remainder of the Properties panel contains mainly the Scale Mode menu for the
glyphs. The most common options for Scale Mode are: Vector, where the glyph length is
proportional to the vector magnitude; and, Off where each glyph is the same length. The
Set Scale Factor parameter controls the base length of the glyphs.

Vectors are by default plotted on cell vertices but, very often, we wish to plot data at
cell centres. This is done by first applying the Cell Centers filter to the case module, and
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then applying the Glyph filter to the resulting cell centre data.

7.1.8 Streamlines
Streamlines are created by first creating tracer lines using the Stream Tracer filter. The
tracer Seed panel specifies a distribution of tracer points over a Line Source or Point
Cloud. The user can view the tracer source, e.g. the line, but it is displayed in white, so
they may need to change the background colour in order to see it.

The distance the tracer travels and the length of steps the tracer takes are specified in
the text boxes in the main Stream Tracer panel. The process of achieving desired tracer lines
is largely one of trial and error in which the tracer lines obviously appear smoother as the
step length is reduced but with the penalty of a longer calculation time.

Once the tracer lines have been created, the Tubes filter can be applied to the Tracer

module to produce high quality images. The tubes follow each tracer line and are not strictly
cylindrical but have a fixed number of sides and given radius. When the number of sides is set
above, say, 10, the tubes do however appear cylindrical, but again this adds a computational
cost.

7.1.9 Image output
The simplest way to output an image to file from ParaView is to select Save Screenshot
from the File menu. On selection, a window appears in which the user can select the
resolution for the image to save. There is a button that, when clicked, locks the aspect ratio,
so if the user changes the resolution in one direction, the resolution is adjusted in the other
direction automatically. After selecting the pixel resolution, the image can be saved. To
achieve high quality output, the user might try setting the pixel resolution to 1000 or more
in the x-direction so that when the image is scaled to a typical size of a figure in an A4 or
US letter document, perhaps in a PDF document, the resolution is sharp.

7.1.10 Animation output
To create an animation, the user should first select Save Animation from the File menu.
A dialogue window appears in which the user can specify a number of things including the
image resolution. The user should specify the resolution as required. The other noteworthy
setting is number of frames per timestep. While this would intuitively be set to 1, it can
be set to a larger number in order to introduce more frames into the animation artificially.
This technique can be particularly useful to produce a slower animation because some movie
players have limited speed control, particularly over mpeg movies.

On clicking the Save Animation button, another window appears in which the user specifies
a file name root and file format for a set of images. On clicking OK, the set of files will be
saved according to the naming convention “<fileRoot>_<imageNo>.<fileExt>”, e.g. the
third image of a series with the file root “animation”, saved in jpg format would be named
“animation_0002.jpg” (<imageNo> starts at 0000).

Once the set of images are saved the user can convert them into a movie using their
software of choice. One option is to use the built in foamCreateVideo script from the command
line whose usage is shown with the -help option.
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7.2 Post-processing command line interface (CLI)
Post-processing is provided directly within OpenFOAM through the command line including
data processing, sampling (e.g. probes, graph plotting) visualisation, case control and run-
time I/O. Functionality can be executed by:

• conventional post-processing, a data processing activity that occurs after a simulation
has run;

• run-time processing, data processing that is performed during the running of a simu-
lation.

Both approaches have advantages. Conventional post-processing allows the user to choose
how to analyse data after the results are obtained. Run-time processing offers greater flexi-
bility because it has access to all the data in the database of the run at all times, rather than
just the data written during the simulation. It also allows the user to monitor processed
data during a simulation and provides a greater level of convenience because the processed
results can be available immediately to the user when the simulation ends.

There are 3 methods of post-processing that cover the options described above.

• The case can be configured to include run-time processing during the simulation.

• The foamPostProcess utility provides conventional post-processing of data after a sim-
ulation is completed.

• The foamPostProcessutility is run with a -solver which provides additional access to
data available on the database for the particular solver.

All modes of post-processing access the same functionality implemented in OpenFOAM in
the function object framework. Function objects can be listed using foamToC by the following
command.

foamToC -functionObjects

The list represents the underlying post-processing functionality. Almost all the functionality
is packaged into a set of configured tools that are conveniently integrated within the post-
processing CLI. Those tools are located in $FOAM_ETC/caseDicts/functions and are listed
by running foamPostProcesswith the -list option.

foamPostProcess -list

This produces a list of tools catalogued in section 7.3.

7.2.1 Run-time data processing
When a user wishes to process data during a simulation, they need to configure the case
accordingly. The configuration process is as follows, using an example of monitoring flow
rate at an outlet patch named outlet.

Firstly, the user should include the patchFlowRate function in a functions file in the case
system directory. The user can copy a template functions file using foamGet as follows
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foamGet functions

Within the functions file, they include the patchFlowRate function with the #includeFunc
directive (e.g. by un-commenting the example entry):

#includeFunc patchFlowRate

Note: prior to v12, the functions were included in a functions sub-dictionary in the case
controlDict file, as shown below.

functions
{

#includeFunc patchFlowRate
... other function objects here ...

}

It is still possible to do this, but using a separate functions file is advantageous because
it avoids reading function objects in applications that do not use them. That will include
the functionality in the patchFlowRate configuration file, located in the directory hierarchy
beginning with $FOAM_ETC/caseDicts/postProcessing.

The configuration of patchFlowRate requires the name of the patch to be supplied. Op-
tion 1 for doing this is that the user copies the patchFlowRate file into their case system
directory. The foamGet script copies the file conveniently, e.g.

foamGet patchFlowRate

The patch name can be edited in the copied file to be outlet. When the solver is run,
it will pick up an included function in the local case system directory, in precedence over
$FOAM_ETC/caseDicts/postProcessing. The flow rate through the patch will be calculated
and written out into a file within a directory named postProcessing.

Option 2 for specifying the patch name is to provide the name as an argument to the
patchFlowRate in the #includeFunc directive, using the syntax keyword=entry.

#includeFunc patchFlowRate(patch=outlet)

In the case where the keyword is field or fields, only the entry is needed when speci-
fying an argument to a function. For example, if the user wanted to calculate and write out
the magnitude of velocity into time directories during a simulation they could simply add
the following to the functions sub-dictionary in controlDict.

#includeFunc mag(U)

This works because the function’s argument U is represented by the keyword field, see
$FOAM_ETC/caseDicts/postProcessing/fields/mag.

Some functions require the setting of many parameters, e.g. to calculate forces and gen-
erate elements for visualisation, etc. For those functions, it is more reliable and convenient
to copy and configure the function using option 1 (above) rather than through arguments.
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7.2.2 The foamPostProcess utility
The user can execute post-processing functions after the simulation is complete using the
foamPostProcess utility. We can us illustrate the use of foamPostProcessusing the pitzDai-
lySteady case from section 2.1. The tutorial does not need to be run to use the case, it can
instead be copied into the user’s run directory and run using its accompanying Allrun script
as follows.

run
cp -r $FOAM_TUTORIALS/incompressibleFluid/pitzDailySteady .
cd pitzDaily
./Allrun

Now the user can run execute post-processing functions with foamPostProcess. The -help
option provides a summary of its use.

foamPostProcess -help

Simple functions like mag can be executed using the -func option; text on the command
line generally needs to be quoted (". . . ") if it contains punctuation characters.

foamPostProcess -func "mag(U)"

This operation calculates and writes the field of magnitude of velocity into a file named
mag(U) in each time directory. Similarly, the patchFlowRate example can be executed using
foamPostProcess.

foamPostProcess -func "patchFlowRate(name=outlet)"

Let us say the user now wants to calculate total pressure = p + |U|2/2 for incompressible
flow with kinematic pressure, p. The function is available, named totalPressureIncompressible,
which requires a rhoInf parameter to be specified. The user could attempt first to run as
follows.

foamPostProcess -func "totalPressureIncompressible(rhoInf=1.2)"

This returns the following error message.

--> FOAM FATAL IO ERROR:
request for volVectorField U from objectRegistry region0 failed

The error message is telling the user that the velocity field U is not loaded. For the function
to work, both the field needs to be loaded using the -field option as follows.

foamPostProcess -func "totalPressureIncompressible(rhoInf=1.2)" -field U
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A more complex example is calculating wall shear stress using the wallShearStress func-
tion.

foamPostProcess -fields "(p U)" -func wallShearStress

Even loading relevant fields, the post-processing fails with the following message.

--> FOAM FATAL ERROR:
Unable to find turbulence model in the database

The message is telling us that the foamPostProcessutility has not constructed the neces-
sary models, i.e. a turbulence model, that the incompressibleFluid solver module used when
running the simulation. This is a situation where we need to post-process (as opposed to run-
time process) using the -solver option modelling will be available that the post-processing
function needs.

foamPostProcess -solver incompressibleFluid -func wallShearStress

Note that no fields need to be supplied, e.g. using "-field U", because incompressibleFluid
module constructs and stores the required fields. Functions can also be selected by the
#includeFunc directive in functions file, instead of the -func option.

7.3 Post-processing functionality
The packaged function objects are catalogued in this section. Each packaged function object
is a configuration file stored in $FOAM_ETC/caseDicts/postProcessing. As a reminder, they
can be listed by the following command.

foamPostProcess -list

7.3.1 Field calculation
age Calculates and writes out the time taken for a particle to travel from an inlet to the

location.

components Writes the component scalar fields (e.g. Ux, Uy, Uz) of a field (e.g. U).

CourantNo Calculates the Courant Number field from the flux field.

cylindrical Transforms a vector field into cylindrical coordinates.

ddt Calculates the Eulerian time derivative of a field.

div Calculates the divergence of a field.

enstrophy Calculates the enstrophy of the velocity field.

OpenFOAM-13



U-214 Post-processing

fieldAverage Calculates and writes the time averages of a given list of fields.

flowType Calculates and writes the flowType of velocity field where: -1 = rotational flow; 0
= simple shear flow; +1 = planar extensional flow.

grad Calculates the gradient of a field.

Lambda2 Calculates and writes the second largest eigenvalue of the sum of the square of the
symmetrical and anti-symmetrical parts of the velocity gradient tensor.

log Calculates the natural logarithm of the specified scalar field.

MachNo Calculates the Mach Number field from the velocity field.

mag Calculates the magnitude of a field.

magSqr Calculates the magnitude-squared of a field.

massFractions Calculates mass-fraction fields from mole-fraction fields, or moles fields, and
a multi-component thermophysical model.

moleFractions Calculates mole-fraction fields from the mass-fraction fields of a multi-component
thermophysical model.

power Calculates power fields, corresponding to pressure, shear and total stress.

PecletNo Calculates the Peclet Number field from the flux field.

Q Calculates the second invariant of the velocity gradient tensor.

randomise Adds a random component to a field, with a specified perturbation magnitude.

reconstruct Calculates the reconstruction of a field; e.g. to construct a cell-centred velocity
U from the face-centred flux phi.

scale Multiplies a field by a scale factor

shearStress Calculates the shear stress, outputting the data as a volSymmTensorField.

specieAdvectiveFlux Calculate the advective flux of a specified species as a surfaceScalarField

specieDiffusionFlux Calculate the diffusive flux of a specified species as a surfaceScalarField

specieFlux Calculate the combined flux of a specified species as a surfaceScalarField

streamFunction Writes the stream-function pointScalarField, calculated from the specified
flux surfaceScalarField.

surfaceInterpolate Calculates the surface interpolation of a field.

totalEnthalpy Calculates and writes the total enthalpy ha +K as the volScalarField Ha.

tr Calculates the trace of a tensor field.
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turbulenceFields Calculates specified turbulence fields and stores it on the database.

turbulenceIntensity Calculates and writes the turbulence intensity field I.

volField Converts a volField::Internal into a volField.

vorticity Calculates the vorticity field, i.e. the curl of the velocity field.

wallHeatFlux Calculates the heat flux at wall patches, outputting the data as a volVector-
Field.

wallHeatTransferCoeff Calculates the estimated incompressible flow heat transfer coefficient
at wall patches, outputting the data as a volScalarField.

wallShearStress Calculates the shear stress at wall patches, outputting the data as a vol-
VectorField.

writeCellCentres Writes the cell-centres volVectorField and the three component fields as
volScalarFields; useful for post-processing thresholding.

writeCellVolumes Writes the cell-volumes volScalarField

writeVTK Writes out specified objects in VTK format, e.g. fields, stored on the case database.

yPlus Calculates the turbulence y+, outputting the data as a yPlus field.

7.3.2 Field operations
add Add a list of fields.

divide From the first field, divide the remaining fields in the list.

multiply Multiply a list of fields.

subtract From the first field, subtracts the remaining fields in the list.

uniform Create a uniform field.

7.3.3 Forces and force coefficients
forceCoeffsCompressible Calculates lift, drag and moment coefficients by summing forces

on specified patches for a case where the solver is compressible (pressure is in units
M/(LTˆ2), e.g. Pa).

forceCoeffsIncompressible Calculates lift, drag and moment coefficients by summing forces on
specified patches for a case where the solver is incompressible (pressure is kinematic,
e.g. mˆ2/sˆ2).

forcesCompressible Calculates pressure and viscous forces over specified patches for a case
where the solver is compressible (pressure is in units M/(LTˆ2), e.g. Pa).

forcesIncompressible Calculates pressure and viscous forces over specified patches for a case
where the solver is incompressible (pressure is kinematic, e.g. mˆ2/sˆ2).
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7.3.4 Sampling for graph plotting
graphCell Writes graph data for specified fields along a line, specified by start and end points.

One graph point is generated in each cell that the line intersects.

graphCellFace Writes graph data for specified fields along a line, specified by start and end
points. One graph point is generated on each face and in each cell that the line
intersects.

graphCutLayerAverage Writes graphs of cell values, volume-averaged in planes perpendicular
to a given direction or in contours of a given distance field, adaptively grading the
distribution of graph points to match the resolution of the mesh.

graphFace Writes graph data for specified fields along a line, specified by start and end
points. One graph point is generated on each face that the line intersects.

graphLayerAverage Generates plots of fields averaged over the layers in the mesh.

graphPatchCutLayerAverage Writes graphs of patch face values, area-averaged in planes per-
pendicular to a given direction. It adaptively grades the distribution of graph points
to match the resolution of the mesh

graphUniform Writes graph data for specified fields along a line, specified by start and end
points. A specified number of graph points are used, distributed uniformly along the
line.

7.3.5 Lagrangian data
dsmcFields Calculate intensive fields UMean, translationalT, internalT, overallT from

averaged extensive fields from a DSMC calculation.

stopAtEmptyClouds Stops the run when all clouds are empty, i.e. have no particles.

7.3.6 Volume fields
cellMax Writes out the maximum cell value for one or more fields.

cellMaxMag Writes out the maximum cell value magnitude for one or more fields.

cellMin Writes out the minimum cell value for one or more fields.

cellMinMag Writes out the maximum cell value magnitude for one or more fields.

volAverage Writes out the volume-weighted average of one or more fields.

volIntegrate Writes out the volume integral of one or more fields.

7.3.7 Numerical data
residuals For specified fields, writes out the initial residuals for the first solution of each time

step; for non-scalar fields (e.g. vectors), writes the largest of the residuals for each
component (e.g. x, y, z).
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7.3.8 Control
adjustTimeStepToChemistry Adjusts the time step to a chemistry model’s bulk chemical time

scales

adjustTimeStepToCombustion Adjusts the time step to a combustion model’s bulk reaction
time scales

removeObjects Removes the specified objects, e.g. fields, stored in the case database.

stopAtClockTime Stops the run when the specified clock time in second has been reached
and optionally write results before stopping.

stopAtFile Stops the run when the file stop is created in the case directory.

stopAtTimeStep Stops the run if the time-step drops below the specified value in seconds
and optionally write results before stopping.

time Writes run time, CPU time and clock time and optionally the CPU and clock times
per time step.

timeStep Writes the time step to a file for monitoring.

userTimeStep Writes the user time step to a file for monitoring.

writeObjects Writes out specified objects, e.g. fields, stored on the case database.

7.3.9 Pressure tools
staticPressureIncompressible Calculates the pressure field in normal units, i.e. Pa in SI, from

kinematic pressure by scaling by a specified density.

totalPressureCompressible Calculates the total pressure field in normal units, i.e. Pa in SI,
for a case where the solver is compressible.

totalPressureIncompressible Calculates the total pressure field for a case where the solver is
incompressible, in kinematic units, i.e. m2/s2 in SI.

7.3.10 Combustion and chemistry
bXiProgress Writes the combustion progress of the Weller b-Xi combustion models.

Qdot Calculates and outputs the heat release rate for the current combustion model.

reactionRates Writes volume averaged reaction rates in kmol/m3/s for each reaction.

specieReactionRates Writes volume averaged reaction rates in kmol/m3/s for each species
and each reaction.

XiReactionRate Writes the turbulent flame-speed and reaction-rate volScalarFields for the
Xi-based combustion models.
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7.3.11 Multiphase
phaseForces Calculates the blended interfacial forces acting on a given phase, i.e. drag, vir-

tual mass, lift, wall-lubrication and turbulent dispersion. Note that it works only in
solver post-processing mode and in combination with multiphaseEulerFoam. For a sim-
ulation involving more than two phases, the accumulated force is calculated by looping
over all phasePairs the phase is a part of.

phaseMap Writes the phase-fraction map field alpha.map with incremental value ranges for
each phase e.g., with values 0 for water, 1 for air, 2 for oil, etc.

populationBalanceSetPhaseSizeDistribution Sets the population balance size distribution for
a single phase by overwriting the values in the size-group fraction fields with values
obtained by integrating a given distribution

populationBalanceSetSizeDistribution Sets the population balance size distribution by over-
writing the values in the size-group fraction fields with values obtained by integrating
a given distribution.

populationBalanceMoments Calculates and writes out integral (integer moments) or mean
properties (mean, variance, standard deviation) of a size distribution computed with
multiphaseEulerFoam. Requires solver post-processing.

populationBalanceSizeDistribution Writes out the size distribution computed with multiphase-
EulerFoam for the entire domain or a volume region. Requires solver post-processing.

wallBoilingProperties Looks up wall boiling wall functions and collects and writes out out
fields of bubble departure diameter, bubble departure frequency, nucleation site density,
effective liquid fraction at the wall, quenching heat flux, and evaporative heat flux.

wallBoilingProperty Looks up the wall boiling model and collects and writes out a field of
one of the wall boiling properties.

7.3.12 Probes
boundaryProbes Writes out values of fields at a cloud of points, interpolated to specified

boundary patches.

interfaceHeight Reports the height of the interface above a set of locations. For each loca-
tion, it writes the vertical distance of the interface above both the location and the
lowest boundary. It also writes the point on the interface from which these heights are
computed.

internalProbes Writes out values of fields interpolated to a specified cloud of points.

probes Writes out values of fields from cells nearest to specified locations.
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7.3.13 Surface fields
faceZoneAverage Calculates the average value of one or more fields on a faceZone.

faceZoneFlowRate Calculates the flow rate through a specified face zone by summing the flux
on patch faces. For solvers where the flux is volumetric, the flow rate is volumetric;
where flux is mass flux, the flow rate is mass flow rate.

patchAverage Calculates the average value of one or more fields on a patch.

patchDifference Calculates the difference between the average values of fields on two specified
patches. Calculates the average value of one or more fields on a patch.

patchFlowRate Calculates the flow rate through a specified patch by summing the flux on
patch faces. For solvers where the flux is volumetric, the flow rate is volumetric; where
flux is mass flux, the flow rate is mass flow rate.

patchIntegrate Calculates the surface integral of one or more fields on a patch.

triSurfaceAverage Calculates the average on a specified triangulated surface by interpolating
onto the triangles and integrating over the surface area. Triangles need to be small
(<= cell size) for an accurate result.

triSurfaceDifference Calculates the difference between the average values of fields on two
specified triangulated surfaces.

triSurfaceVolumetricFlowRate Calculates volumetric flow rate through a specified triangu-
lated surface by interpolating velocity onto the triangles and integrating over the sur-
face area. Triangles need to be small (<= cell size) for an accurate result.

7.3.14 Meshing
checkMesh Executes primitiveMesh::checkMesh to check the distortion of moving meshes.

multiValveEngineState Writes the multi-valve engine motion state providing details of the
piston and valve position, speed etc.

7.3.15 ‘Pluggable’ solvers
particles Tracks a cloud of parcels driven by the flow of the continuous phase.

phaseScalarTransport Solves a transport equation for a scalar field within one phase of a
multiphase simulation.

scalarTransport Solves a transport equation for a scalar field.
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7.3.16 Sampling surfaces
cutPlaneSurface Writes out cut-plane surface files with interpolated field data in VTK for-

mat.

isoSurface Writes out iso-surface files with interpolated field data in VTK format.

patchSurface Writes out patch surface files with interpolated field data in VTK format.

7.3.17 Streamlines
streamlinesLine Writes out files of stream lines with interpolated field data in VTK format,

with initial points uniformly distributed along a line.

streamlinesPatch Writes out files of stream lines with interpolated field data in VTK format,
with initial points randomly selected within a patch.

streamlinesPoints Writes out files of stream lines with interpolated field data in VTK format,
with specified initial points.

streamlinesSphere Writes out files of stream lines with interpolated field data in VTK format,
with initial points randomly selected within a sphere.

7.4 Sampling and monitoring data
There are a set of general post-processing functions for sampling data across the domain for
graphs and visualisation. Several functions also provide data in a single file, in the form of
time versus values, that can be plotted onto graphs. This time-value data can be monitored
during a simulation with the foamMonitor script.

7.4.1 Probing data
The functions for probing data are boundaryProbes, internalProbes and probes as listed in
section 7.3.12. All functions work on the basis that the user provides some point locations
and a list of fields, and the function writes out values of the fields are those locations. The
differences between the functions are as follows.

• probes identifies the nearest cells to the probe locations and writes out the cell values;
data is written into a single file in time-value format, suitable for plotting a graph.

• boundaryProbes and internalProbes interpolate field data to the probe locations, with
the locations being snapped onto boundaries for boundaryProbes; data sets are written
to separate files at scheduled write times (like fields). data.

Generally probes is more suitable for monitoring values at smaller numbers of locations,
whereas the other functions are typically for sampling at large numbers of locations.

As an example, the user could use the pitzDailySteady case set up in section 2.1. The
probes function is best configured by copying the file to the local system directory using
foamGet.
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foamGet probes

The user can modify the probeLocations in the probes file as follows.
12
13 #includeEtc "caseDicts/postProcessing/probes/probes.cfg"
14
15 fields (p U);
16 probeLocations
17 (
18 (0.01 0 0)
19 );
20
21 // ************************************************************************* //

The configuration is completed by adding the #includeFunc directive to a functions file in
the system directory.

#includeFunc probes

When the simulation runs, time-value data is written into p and U files in postProcessing/pro-
bes/0.

7.4.2 Sampling for graphs
The graphUniform function samples data for graph plotting. To use it, the graphUniform file
can be copied into the system directory to be configured. We will configure it here using the
pitzDaily case as before. The file is simply copied using foamGet.

foamGet graphUniform

The start and end points of the line, along which data is sampled, should be edited; the
entries below provide a vertical line across the full height of the geometry 0.01 m beyond
the back step.

14
15 start (0.01 -0.025 0);
16 end (0.01 0.025 0);
17 nPoints 100;
18
19 fields (U p);
20
21 axis distance; // The independent variable of the graph. Can be "x",
22 // "y", "z", "xyz" (all coordinates written out), or
23 // "distance" (from the start point).
24
25 #includeEtc "caseDicts/postProcessing/graphs/graphUniform.cfg"
26
27 // ************************************************************************* //

The configuration is completed by adding the #includeFunc directive to a functions file in
the system directory.

#includeFunc graphUniform
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Figure 7.5: Graph of Ux at x = 0.01, uniform sampling

The simulation can be then re-run or the user could run the post-processing with the following
command.

foamPostProcess -solver incompressibleFluid

Either way, distance-value data is written into files in time directories within postProcess-
ing/graphUniform. The user can quickly display the data for x-component of velocity, Ux in
the last time e.g. 285, by running gnuplot and plotting values.

gnuplot
gnuplot> set style data linespoints
gnuplot> plot "postProcessing/graphUniform/285/line_U.xy" u 2:1

This produces the graph shown in Figure 7.5. This graph corresponds to the velocity inlet
with a uniform profile, rather than a boundary layer profile. The formatting of the graph
is specified in configuration files in $FOAM_ETC/caseDicts/postProcessing/graphs. The gra-
phUniform.cfg file in that directory includes the configuration as follows.

8
9 #includeEtc "caseDicts/functions/graphs/graph.cfg"

10
11 sets
12 {
13 line
14 {
15 type lineUniform;
16 axis $axis;
17 start $start;
18 end $end;
19 nPoints $nPoints;
20 }
21 }
22
23 // ************************************************************************* //

It shows that the sampling type is lineUniform, meaning the sampling uses a uniform
distribution of points along a line. The other parameters are included by macro expansion
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Figure 7.6: Graph of Ux at x = 0.01, mid-point sampling

from the main file and specify the line start and end, the number of points and the distance
parameter specified on the horizontal axis of the graph.

An alternative graph function object, graphCell, samples the data at locations nearest to
the cell centres. The user can copy that function object file and configure it as shown below.

13
14 start (0.01 -0.025 0);
15 end (0.01 0.025 0);
16 fields (U p);
17
18 axis distance; // The independent variable of the graph. Can be "x",
19 // "y", "z", "xyz" (all coordinates written out), or
20 // "distance" (from the start point).
21
22 #includeEtc "caseDicts/postProcessing/graphs/graphCell.cfg"
23
24 // ************************************************************************* //

Running the post-processing produces the graph in Figure 7.6.

7.4.3 Live monitoring of data
Functions like probes produce a single file of time-value data, suitable for graph plotting.
When the function is executed during a simulation, the user may wish to monitor the data
live on screen. The foamMonitor script enables this; to discover its functionality, the user
run it with the -help option. The help option includes an example of monitoring residuals
that we can demonstrate in this section.

Firstly, include the residuals function in the functions file.

#includeFunc residuals

The default fields whose residuals are captured are p and U. Should the user wish to configure
other fields, they should make copy the residuals file in their system and edit the fields entry
accordingly. All functions files are within the $FOAM_ETC/caseDicts directory. The residuals
file can be located using foamInfo:
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Figure 7.7: Live plot of residuals with foamMonitor

foamInfo residuals

It can then be copied into the system directory conveniently using foamGet:

foamGet residuals

The user can then run the case in the background.

foamRun > log &

The user should then run foamMonitor using the -l option for a log scale y-axis on the
residuals file as follows. If the command is executed before the simulation is complete, they
can see the graph being updated live.

foamMonitor -l postProcessing/residuals/0/residuals.dat &

It produces the graph of residuals for pressure and velocity in Figure 7.7.

7.4.4 Sampling for visualisation
There are several surfaces and streamlines functions, listed in sections 7.3.16 and 7.3.17,
that can be used to generate files for visualisation. The use of streamlinesLine is already
configured in the pitzDailySteady case.

To generate a cutting plane, the cutPlaneSurface function can be configured by copying
the cutPlaneSurface file to the system directory using foamGet.
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foamGet cutPlaneSurface

The file is configured by setting the origin and normal of the plane and the field data to
be sampled. We can edit the file to produce a cutting plane along the pitzDaily geometry,
normal to the z-direction.

16
17 fields (p U);
18
19 interpolate true; // If false, write cell data to the surface triangles.
20 // If true, write interpolated data at the surface points.
21
22 #includeEtc "caseDicts/postProcessing/surface/cutPlaneSurface.cfg"
23
24 // ************************************************************************* //

The function can be included as normal by adding the #includeFunc to a functions file in
the system directory. Alternatively, the user could test running the function using the solver
post-processing by the following command.

foamPostProcess -solver incompressibleFluid -func cutPlaneSurface

This produces VTK format files of the cutting plane with pressure and velocity data in time
directories in the postProcessing/cutPlaneSurface directory. The user can display the cutting
plane by opening ParaView (type paraview), then doing File->Open and selecting one of
the files, e.g. postProcessing/cutPlaneSurface/285/U_zNormal.vtk as shown in Figure 7.8.

Figure 7.8: Cutting plane with velocity

7.4.5 The foamVTKSeries script
The previous section describes how to create surface image files in VTK format which can
be read into ParaView and processed. The image files are distributed across time directo-
ries within a sub-directory of the postProcessing directory, e.g. postProcessing/cutPlaneSur-
face/0, postProcessing/cutPlaneSurface/100, postProcessing/cutPlaneSurface/200 and post-
Processing/cutPlaneSurface/285 from the case in the previous section.

If the user wishes to read a collection of files into ParaView, e.g. from time directories
within the cutPlaneSurface directory, it would be a somewhat laborious job. In addition,
ParaView would see no connection between the files and that they form a sequence. Without
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sequencing it is then not possible to create an animation from the files (without some manual
effort).

The foamVTKSeries script overcomes this challenge quickly and easily. The user simply
needs to run the script as follows.

foamVTKSeries

The script interrogates the contents of the postProcessing directory and creates a VTK series
file, with extension .vtk.series for each collection of files it encounters. In the cutPlaneSurface
example, foamVTKSeries would create a file named U_zNormal.vtk.series in the postProcess-
ing/cutPlaneSurface directory. From ParaView, the user can then load the series of files by
going to File->Open and selecting the U_zNormal.vtk.series file. The files appear in the
Pipeline Browser as a single entity, with each file selectable by changing time in the Time
selector.

7.5 Third-Party post-processing
OpenFOAM includes the following applications for converting data to formats for post-
processing with several third-party tools. For EnSight, it additionally includes a reader
module, described in the next section.

foamDataToFluent Translates OpenFOAM data to Fluent format.

foamToEnsight Translates OpenFOAM data to EnSight format.

foamToEnsightParts Translates OpenFOAM data to Ensight format. An Ensight part is
created for each cellZone and patch.

foamToGMV Translates foam output to GMV readable files.

foamToTetDualMesh Converts polyMesh results to tetDualMesh.

foamToVTK Legacy VTK file format writer.

smapToFoam Translates a STAR-CD SMAP data file into OpenFOAM field format.

7.5.1 Post-processing with Ensight
OpenFOAM offers the capability for post-processing OpenFOAM cases with EnSight, with
a choice of 2 options:

• converting the OpenFOAM data to EnSight format with the foamToEnsight utility;

• reading the OpenFOAM data directly into EnSight using the ensight74FoamExec mod-
ule.
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The foamToEnsight utility converts data from OpenFOAM to EnSight file format. For a
given case, foamToEnsight is executed like any normal application. foamToEnsight creates a
directory named Ensight in the case directory, deleting any existing Ensight directory in the

process. The converter reads the data in all time directories and writes into a case file and
a set of data files. The case file is named EnSight_Case and contains details of the data file
names. Each data file has a name of the form EnSight_nn.ext, where nn is an incremental
counter starting from 1 for the first time directory, 2 for the second and so on and ext is a
file extension of the name of the field that the data refers to, as described in the case file,
e.g.T for temperature, mesh for the mesh. Once converted, the data can be read into EnSight
by the normal means:

1. from the EnSight GUI, the user should select Data (Reader) from the File menu;

2. the appropriate EnSight_Case file should be highlighted in the Files box;

3. the Format selector should be set to Case, the EnSight default setting;

4. the user should click (Set) Case and Okay.

EnSight provides the capability of using a user-defined module to read data from a for-
mat other than the standard EnSight format. OpenFOAM includes its own reader module
ensightFoamReader that is compiled into a library named libuserd-foam. It is this library that
EnSight needs to use which means that it must be able to locate it on the filing system as
described in the following section.

In order to run the EnSight reader, it is necessary to set some environment variables
correctly. The settings are made in the bashrc (or cshrc) file in the $WM_PROJECT_DIR/-
etc/apps/ensightFoam directory. The environment variables associated with EnSight are pre-
fixed by $CEI_ or $ENSIGHT7_ and listed in Table 7.1. With a standard user setup, only
$CEI_HOME may need to be set manually, to the path of the EnSight installation.

Environment variable Description and options
$CEI_HOME Path where EnSight is installed, eg /usr/local/ensight, added

to the system path by default
$CEI_ARCH Machine architecture, from a choice of names cor-

responding to the machine directory names in
$CEI_HOME/ensight74/machines; default settings include
linux_2.4 and sgi_6.5_n32

$ENSIGHT7_READER Path that EnSight searches for the user defined libuserd-foam
reader library, set by default to $FOAM_LIBBIN

$ENSIGHT7_INPUT Set by default to dummy

Table 7.1: Environment variable settings for EnSight.

The principal difficulty in using the EnSight reader lies in the fact that EnSight expects
that a case to be defined by the contents of a particular file, rather than a directory as it is
in OpenFOAM. Therefore in following the instructions for the using the reader below, the
user should pay particular attention to the details of case selection, since EnSight does not
permit selection of a directory name.

OpenFOAM-13



U-228 Post-processing

1. from the EnSight GUI, the user should select Data (Reader) from the File menu;

2. The user should now be able to select the OpenFOAM from the Format menu; if not,
there is a problem with the configuration described above.

3. The user should find their case directory from the File Selection window, highlight one
of top 2 entries in the Directories box ending in /. or /.. and click (Set) Geometry.

4. The path field should now contain an entry for the case. The (Set) Geometry text box
should contain a ‘/’.

5. The user may now click Okay and EnSight will begin reading the data.

6. When the data is read, a new Data Part Loader window will appear, asking which
part(s) are to be read. The user should select Load all.

7. When the mesh is displayed in the EnSight window the user should close the Data Part
Loader window, since some features of EnSight will not work with this window open.
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Chapter 8

Models and physical properties

OpenFOAM includes a large range of solvers, each designed for a specific class of flow, as
described in section 3.6. Each solver uses a particular set of models which calculate physical
properties and simulate phenomena like transport, turbulence, thermal radiation, etc.

From OpenFOAM v10 onwards, a distinction is made between material properties and
models for phenomena such as those mentioned above. Properties are specified in phys-
icalProperties file in the constant directory. In the case of fluids, properties in physical-
Properties relate to a fluid at rest. They are the properties you might look up from a table
in a book, so can be dependent on temperature T , based on some function.

Properties described in physicalProperties do not include any dependency on the flow
itself. For example, turbulence, visco-elasticity and the variation of viscosity ν with strain-
rate, are all specified in a momentumTransport file in the constant directory. This chapter
includes a description of models for viscosity which are dependent on strain-rate in sec-
tion 8.3 and turbulence models in section 8.2. Thermophysical models, which are specified
in the physicalProperties file (since they represent temperature dependency of properties) are
described in section 8.1.

8.1 Thermophysical models
Thermophysical models are concerned with: thermodynamics, e.g. relating internal energy
e to temperature T ; transport, e.g. the dependence of properties such as ν on temperature;
and state, e.g. dependence of density ρ on T and pressure p. Thermophysical models are
specified in the physicalProperties dictionary.

A thermophysical model required an entry named thermoType which specifies the package
of thermophysical modelling that is used in the simulation. OpenFOAM includes a large set
of pre-compiled combinations of modelling, built within the code using C++ templates. It
can also compile on-demand a combination which is not pre-compiled during a simulation.

Thermophysical modelling packages begin with the equation of state and then adding
more layers of thermophysical modelling that derive properties from the previous layer(s).
The keyword entries in thermoType reflects the multiple layers of modelling and the under-
lying framework in which they combined. Below is an example entry for thermoType:

thermoType
{
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type hePsiThermo;
mixture pureMixture;
transport const;
thermo hConst;
equationOfState perfectGas;
specie specie;
energy sensibleEnthalpy;

}

The keyword entries specify the choice of thermophysical models, e.g. transport constant
(constant viscosity, thermal diffusion), equationOfState perfectGas , etc. In addition there
is a keyword entry named energy that allows the user to specify the form of energy to be
used in the solution and thermodynamics. The following sections explains the entries and
options in the thermoType package.

8.1.1 Thermophysical and mixture models
Each solver that uses thermophysical modelling constructs an object of a specific thermo-
physical model class. The model classes are listed below.

fluidThermo Thermophysical model for a general fluid with fixed composition used by the
isoThermalFluid and fluid solver modules.

rhoThermo Thermophysical model for liquids and solids, used by the isothermalFilm and film
solver module.

psiThermo Thermophysical model for gases only, with fixed composition, used by the shock-
Fluid solver module.

fluidMulticomponentThermo Thermophysical model for fluid of varying composition used by
the multicomponentFluid solver module.

psiuMulticomponentThermo Thermophysical model for combustion that modelled by a lam-
inar flame speed and regress variable used by the XiFluid solver module.

compressibleMultiphaseVoFMixtureThermo Thermophysical models for multiple phases used
by the compressibleMultiphaseVoF solver module.

solidThermo and solidDisplacementThermo Thermophysical models for solids used by by the
solid and solidDisplacement solver modules, respectively.

The type keyword (in the thermoType sub-dictionary) specifies the underlying thermophys-
ical model used by the solver. The user can select from the following.

• hePsiThermo: available for solvers that construct fluidThermo, psiThermo, fluidMulti-
componentThermo and .

• heRhoThermo: available for solvers that construct fluidThermo, rhoThermo, fluidMulti-
componentThermo, compressibleMultiphaseVoFMixtureThermo.
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• heheuPsiThermo: for solvers that construct psiuMulticomponentThermo.

• heSolidThermo: for solvers that construct solidThermo or solidDisplacementThermo.

The mixture specifies the mixture composition. The options available are listed below.

• pureMixture: mixture with fixed composition, which reads properties from a a sub-
dictionary called mixture.

• multicomponentMixture: mixture with variable composition, with species, e.g. O2,
N2, listed by the species keyword, and properties specified for each specie within
sub-dictionaries named after each specie.

• coefficientWilkeMulticomponentMixture: as multicomponentMixture, but applies
Wilke’s equation to calculate transport properties for the mixture.

• valueMulticomponentMixture: as multicomponentMixture, but applies mole-fract-
ion weighting to calculate transport properties for the mixture.

• homogeneousMixture, inhomogeneousMixture and veryInhomogeneousMixture: for
combustion based on laminar flame speed and regress variables, constituents are a set
of mixtures, such as fuel, oxidant and burntProducts.

8.1.2 Transport model
The transport modelling concerns evaluating dynamic viscosity µ, thermal conductivity κ
and thermal diffusivity α (for internal energy and enthalpy equations). The current transport
models are as follows:

const assumes a constant µ and Prandtl number Pr = cpµ/κ which is simply specified by a
two keywords, mu and Pr, respectively.

sutherland calculates µ as a function of temperature T from a Sutherland coefficient As and
Sutherland temperature Ts, specified by keywords As and Ts; µ is calculated according
to:

µ = As

√
T

1 + Ts/T
. (8.1)

polynomial calculates µ and κ as a function of temperature T from a polynomial of any order
N , e.g.:

µ =
N−1∑
i=0

aiT
i. (8.2)

logPolynomial calculates ln(µ) and ln(κ) as a function of ln(T ) from a polynomial of any
order N ; from which µ, κ are calculated by taking the exponential, e.g.:

ln(µ) =
N−1∑
i=0

ai[ln(T )]i. (8.3)
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Andrade calculates ln(µ) and ln(κ) as a polynomial function of T , e.g. for µ:

ln(µ) = a0 + a1T + a2T
2 + a3

a4 + T
. (8.4)

tabulated uses uniform tabulated data for viscosity and thermal conductivity as a function
of pressure and temperature.

icoTabulated uses non-uniform tabulated data for viscosity and thermal conductivity as a
function of temperature.

WLF (Williams-Landel-Ferry) calculates µ as a function of temperature from coefficients
C1 and C2 and reference temperature Tr specified by keywords C1, C2 and Tr; µ is
calculated according to:

µ = µ0 exp
(
−C1(T − Tr)
C2 + T − Tr

)
(8.5)

8.1.3 Thermodynamic models
The thermodynamic models are concerned with evaluating the specific heat cp from which
other properties are derived. The current thermo models are as follows:

eConst assumes a constant cv and a heat of fusion Hf which is simply specified by a two
values cv Hf , given by keywords Cv and Hf.

eIcoTabulated calculates cv by interpolating non-uniform tabulated data of (T, cp) value pairs,
e.g.:
( (200 1005) (400 1020) );

ePolynomial calculates cv as a function of temperature by a polynomial of any order N :

cv =
N−1∑
i=0

aiT
i. (8.6)

ePower calculates cv as a power of temperature according to:

cv = c0

(
T

Tref

)n0

. (8.7)

eTabulated calculates cv by interpolating uniform tabulated data of (T, cp) value pairs, e.g.:
( (200 1005) (400 1020) );

hConst assumes a constant cp and a heat of fusion Hf which is simply specified by a two
values cp Hf , given by keywords Cp and Hf.

hIcoTabulated calculates cp by interpolating non-uniform tabulated data of (T, cp) value
pairs, e.g.:
( (200 1005) (400 1020) );
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hPolynomial calculates cp as a function of temperature by a polynomial of any order N :

cp =
N−1∑
i=0

aiT
i. (8.8)

hPower calculates cp as a power of temperature according to:

cp = c0

(
T

Tref

)n0

. (8.9)

hTabulated calculates cp by interpolating uniform tabulated data of (T, cp) value pairs, e.g.:
( (200 1005) (400 1020) );

janaf calculates cp as a function of temperature T from a set of coefficients taken from JANAF
tables of thermodynamics. The ordered list of coefficients is given in Table 8.1. The
function is valid between a lower and upper limit in temperature Tl and Th respectively.
Two sets of coefficients are specified, the first set for temperatures above a common
temperature Tc (and below Th), the second for temperatures below Tc (and above Tl).
The function relating cp to temperature is:

cp = R((((a4T + a3)T + a2)T + a1)T + a0). (8.10)

In addition, there are constants of integration, a5 and a6, both at high and low tem-
perature, used to evaluating h and s respectively.

Description Entry Keyword
Lower temperature limit Tl (K) Tlow
Upper temperature limit Th (K) Thigh
Common temperature Tc (K) Tcommon
High temperature coefficients a0 . . . a4 highCpCoeffs (a0 a1 a2 a3 a4...
High temperature enthalpy offset a5 a5...
High temperature entropy offset a6 a6)
Low temperature coefficients a0 . . . a4 lowCpCoeffs (a0 a1 a2 a3 a4...
Low temperature enthalpy offset a5 a5...
Low temperature entropy offset a6 a6)

Table 8.1: JANAF thermodynamics coefficients.

8.1.4 Composition of each constituent
There is currently only one option for the specie model which specifies the composition of
each constituent. That model is itself named specie, which is specified by the following
entries.

• nMoles: number of moles of component. This entry is only used for combustion
modelling based on regress variable with a homogeneous mixture of reactants; otherwise
it is set to 1.

• molWeight in grams per mole of specie.
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8.1.5 Equation of state
The following equations of state are available in the thermophysical modelling library.

adiabaticPerfectFluid Adiabatic perfect fluid:

ρ = ρ0

(
p+B

p0 +B

)1/γ

, (8.11)

where ρ0, p0 are reference density and pressure respectively, and B is a model constant.

Boussinesq Boussinesq approximation

ρ = ρ0 [1− β (T − T0)] (8.12)

where β is the coeffient of volumetric expansion and ρ0 is the reference density at
reference temperature T0.

icoPolynomial Incompressible, polynomial equation of state:

ρ =
N−1∑
i=0

aiT
i, (8.13)

where ai are polynomial coefficients of any order N .

icoTabulated Tabulated data for an incompressible fluid using (T, ρ) value pairs, e.g.
rho ( (200 1010) (400 980) );

incompressiblePerfectGas Perfect gas for an incompressible fluid:

ρ = 1
RT

pref, (8.14)

where pref is a reference pressure.

linear Linear equation of state:

ρ = ψp+ ρ0, (8.15)

where ψ is compressibility (not necessarily (RT )−1).

PengRobinsonGas Peng Robinson equation of state:

ρ = 1
zRT

p, (8.16)

where the complex function z = z(p, T ) can be referenced in the source code in Peng-
RobinsonGasI.H, in the $FOAM_SRC/thermophysicalModels/specie/equationOfState/ di-
rectory.

perfectFluid Perfect fluid:

ρ = 1
RT

p+ ρ0, (8.17)

where ρ0 is the density at T = 0.
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perfectGas Perfect gas:

ρ = 1
RT

p. (8.18)

rhoConst Constant density:

ρ = constant. (8.19)

rhoTabulated Uniform tabulated data for a compressible fluid, calculating ρ as a function of
T and p.

rPolynomial Reciprocal polynomial equation of state for liquids and solids:

1
ρ
= C0 + C1T + C2T

2 − C3p− C4pT (8.20)

where Ci are coefficients.

8.1.6 Selection of energy variable
The user must specify the form of energy to be used in the solution, either internal energy
e and enthalpy h, and in forms that include the heat of formation ∆hf or not. This choice
is specified through the energy keyword.

We refer to absolute energy where heat of formation is included, and sensible energy
where it is not. For example absolute enthalpy h is related to sensible enthalpy hs by

h = hs +
∑
i

ci∆hif (8.21)

where ci and hif are the molar fraction and heat of formation, respectively, of specie i. In most
cases, we use the sensible form of energy, for which it is easier to account for energy change
due to reactions. Keyword entries for energy therefore include e.g. sensibleEnthalpy,
sensibleInternalEnergy and absoluteEnthalpy.

8.1.7 Thermophysical property data
The basic thermophysical properties are specified for each species from input data. Data
entries must contain the name of the specie as the keyword, e.g. O2, H2O, mixture, followed
by sub-dictionaries of coefficients, including:

specie containing i.e. number of moles, nMoles, of the specie, and molecular weight,
molWeight in units of g/mol;

thermodynamics containing coefficients for the chosen thermodynamic model (see below);

transport containing coefficients for the chosen tranpsort model (see below).

The following is an example entry for a specie named fuel modelled using sutherland
transport and janaf thermodynamics:
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fuel
{

specie
{

nMoles 1;
molWeight 16.0428;

}
thermodynamics
{

Tlow 200;
Thigh 6000;
Tcommon 1000;
highCpCoeffs (1.63543 0.0100844 -3.36924e-06 5.34973e-10

-3.15528e-14 -10005.6 9.9937);
lowCpCoeffs (5.14988 -0.013671 4.91801e-05 -4.84744e-08

1.66694e-11 -10246.6 -4.64132);
}
transport
{

As 1.67212e-06;
Ts 170.672;

}
}

The following is an example entry for a specie named air modelled using const transport
and hConst thermodynamics:

air
{

specie
{

nMoles 1;
molWeight 28.96;

}
thermodynamics
{

Cp 1004.5;
Hf 2.544e+06;

}
transport
{

mu 1.8e-05;
Pr 0.7;

}
}
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8.2 Turbulence models
Turbulence modelling is part of general momentum transport which is concerned with
models for the viscous stress in a fluid. Momentum transport is configured through the
momentumTransport file in the constant directory of a case. The file includes the mandatory
simulationType keyword that specifies how turbulence is modelled, which includes the
following options:

laminar uses no turbulence models;

RAS uses Reynolds-averaged simulation (RAS) modelling;

LES uses large-eddy simulation (LES) modelling.

The file then includes a sub-dictionary of the same name as the chosen simulationType
which contains the model selections. A typical example is shown below that uses the k–ε
(k-epsilon) turbulence model.

16
17 simulationType RAS;
18
19 RAS
20 {
21 model kEpsilon;
22
23 turbulence on;
24 }
25
26 // ************************************************************************* //

The file shows the selected RAS simulation followed by the RAS sub-dictionary containing
the model selections, in particular the model which is set to kEpsilon. The choice of RAS
models is described in section 8.2.1 and more information can be found in Chapter 7 of
Notes on Computational Fluid Dynamics: General Principles. The LES models
are listed in section 8.2.3.

Where the laminar option is selected, the sub-dictionary is optional and will default
to a Newtonian model, using the viscosity specified in the physicalProperties file. Other
models, including non-Newtonian and visco-elastic models, are described in section 8.3.
Non-Newtonian models can also be combined with turbulence models (whereas visco-elastic
models cannot).

For a general introduction to turbulence for CFD, the reader may also wish to consult
Chapter 6 of Notes on Computational Fluid Dynamics: General Principles.

8.2.1 Reynolds-averaged simulation (RAS) modelling
If RAS is selected, the choice of RAS modelling is specified in a RAS sub-dictionary which
requires the following entries.

• model: name of RAS turbulence model.

• turbulence: switch to turn the solving of turbulence modelling on/off.

• printCoeffs: optional switch to print model coeffs to terminal at simulation start up,
defaults to false.
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• <model>Coeffs: optional dictionary of coefficients for the respective model, defaults
to standard coefficients.

Turbulence models can be listed by running foamToC with a relevant table listed from the
RAS or LES tables. For example, the RAS tables are listed by running the following command.

foamToC -table RAS

This returns several sub-tables. The user can then list the models within one of those tables,
e.g. the incompressible models.

foamToC -table RASincompressibleMomentumTransportModel

The RAS models used in the tutorials can be listed using foamSearch with the following
command. The lists of available models are given in the following sections.

foamSearch $FOAM_TUTORIALS momentumTransport RAS/model

Users can locate tutorials using a particular model, e.g. buoyantKEpsilon, using foamInfo.

foamInfo buoyantKEpsilon

8.2.2 RAS turbulence models
For incompressible flows, the RAS model can be chosen from the list below.

LRR Launder, Reece and Rodi Reynolds-stress turbulence model for incompressible flows.

LamBremhorstKE Lam and Bremhorst low-Reynolds number k-epsilon turbulence model for
incompressible flows.

LaunderSharmaKE Launder and Sharma low-Reynolds k-epsilon turbulence model for incom-
pressible flows.

LienCubicKE Lien cubic non-linear low-Reynolds k-epsilon turbulence models for incompress-
ible flows.

LienLeschziner Lien and Leschziner low-Reynolds number k-epsilon turbulence model for
incompressible flows.

RNGkEpsilon Renormalization group k-epsilon turbulence model for incompressible flows.

SSG Speziale, Sarkar and Gatski Reynolds-stress turbulence model for incompressible flows.

ShihQuadraticKE Shih’s quadratic algebraic Reynolds stress k-epsilon turbulence model for
incompressible flows

SpalartAllmaras Spalart-Allmaras one-eqn mixing-length model for incompressible external
flows.

OpenFOAM-13



8.2 Turbulence models U-239

kEpsilon Standard k-epsilon turbulence model for incompressible flows.

kEpsilonLopesdaCosta Variant of the standard k-epsilon turbulence model with additional
source terms to handle the changes in turbulence in porous regions for atmospheric
flows over forested terrain.

kOmega Standard high Reynolds-number k-omega turbulence model for incompressible flows.

kOmega2006 Standard (2006) high Reynolds-number k-omega turbulence model for incom-
pressible flows.

kOmegaSST Implementation of the k-omega-SST turbulence model for incompressible flows.

kOmegaSSTLM Langtry-Menter 4-equation transitional SST model based on the k-omega-
SST RAS model.

kOmegaSSTSAS Scale-adaptive URAS model based on the k-omega-SST RAS model.

kkLOmega Low Reynolds-number k-kl-omega turbulence model for incompressible flows.

qZeta Gibson and Dafa’Alla’s q-zeta two-equation low-Re turbulence model for incompress-
ible flows

realizableKE Realizable k-epsilon turbulence model for incompressible flows.

v2f Lien and Kalitzin’s v2-f turbulence model for incompressible flows, with a limit imposed
on the turbulent viscosity given by Davidson et al.

For compressible flows, the RAS model can be chosen from the list below.

LRR Launder, Reece and Rodi Reynolds-stress turbulence model for compressible flows.

LaunderSharmaKE Launder and Sharma low-Reynolds k-epsilon turbulence model for com-
pressible and combusting flows including rapid distortion theory (RDT) based com-
pression term.

RNGkEpsilon Renormalization group k-epsilon turbulence model for compressible flows.

SSG Speziale, Sarkar and Gatski Reynolds-stress turbulence model for compressible flows.

SpalartAllmaras Spalart-Allmaras one-eqn mixing-length model for compressible external
flows.

buoyantKEpsilon Additional buoyancy generation/dissipation term applied to the k and ep-
silon equations of the standard k-epsilon model.

kEpsilon Standard k-epsilon turbulence model for compressible flows including rapid distor-
tion theory (RDT) based compression term.

kOmega Standard high Reynolds-number k-omega turbulence model for compressible flows.

kOmega2006 Standard (2006) high Reynolds-number k-omega turbulence model for com-
pressible flows.
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kOmegaSST Implementation of the k-omega-SST turbulence model for compressible flows.

kOmegaSSTLM Langtry-Menter 4-equation transitional SST model based on the k-omega-
SST RAS model.

kOmegaSSTSAS Scale-adaptive URAS model based on the k-omega-SST RAS model.

realizableKE Realizable k-epsilon turbulence model for compressible flows.

v2f Lien and Kalitzin’s v2-f turbulence model for compressible flows, with a limit imposed
on the turbulent viscosity given by Davidson et al.

8.2.3 Large eddy simulation (LES) modelling
If LES is selected, the choice of LES modelling is specified in a LES sub-dictionary which
requires the following entries.

• model: name of LES turbulence model.

• turbulence: switch to turn the solving of turbulence modelling on/off.

• delta: name of delta δ model.

• printCoeffs: optional switch to print model coeffs to terminal at simulation start up,
defaults to false.

• <model>Coeffs:

• <model>Coeffs: optional dictionary of coefficients for the respective model, to over-
ride the default coefficients.

• <delta>Coeffs: dictionary of coefficients for the delta model.

The LES models used in the tutorials can be listed using foamSearch with the following
command. The lists of available models are given in the following sections.

foamSearch $FOAM_TUTORIALS momentumTransport LES/model

8.2.4 LES turbulence models
For incompressible and compressible flows, the LES model can be chosen from the list
below.

DeardorffDiffStress Differential SGS Stress Equation Model for incompressible flows

Smagorinsky The Smagorinsky SGS model.

SpalartAllmarasDDES SpalartAllmaras DDES turbulence model for incompressible flows

SpalartAllmarasDES SpalartAllmarasDES DES turbulence model for incompressible flows
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SpalartAllmarasIDDES SpalartAllmaras IDDES turbulence model for incompressible flows

WALE The Wall-adapting local eddy-viscosity (WALE) SGS model.

dynamicKEqn Dynamic one equation eddy-viscosity model

dynamicLagrangian Dynamic SGS model with Lagrangian averaging

kEqn One equation eddy-viscosity model

kOmegaSSTDES Implementation of the k-omega-SST-DES turbulence model for incompress-
ible flows.

8.2.5 Model coefficients
The coefficients for the RAS turbulence models are given default values in their respective
source code. If the user wishes to override these default values, then they can do so by
adding a sub-dictionary entry to the RAS sub-dictionary file, whose keyword name is that
of the model with Coeffs appended, e.g. kEpsilonCoeffs for the kEpsilon model. If the
printCoeffs switch is on in the RAS sub-dictionary, an example of the relevant ...Coeffs
dictionary is printed to standard output when the model is created at the beginning of a
run. The user can simply copy this into the RAS sub-dictionary file and edit the entries as
required.

8.2.6 Wall functions
A range of wall function models is available in OpenFOAM that are applied as boundary
conditions on individual patches. This enables different wall function models to be applied
to different wall regions. The choice of wall function model is specified through the turbulent
viscosity field νt in the 0/nut file. For example, a 0/nut file:

16
17 dimensions [0 2 -1 0 0 0 0];
18
19 internalField uniform 0;
20
21 boundaryField
22 {
23 inlet
24 {
25 type calculated;
26 value uniform 0;
27 }
28 outlet
29 {
30 type calculated;
31 value uniform 0;
32 }
33 upperWall
34 {
35 type nutkWallFunction;
36 value uniform 0;
37 }
38 lowerWall
39 {
40 type nutkWallFunction;
41 value uniform 0;
42 }
43 frontAndBack
44 {
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45 type empty;
46 }
47 }
48
49
50 // ************************************************************************* //

There are a number of wall function models available in the release, e.g. nutWallFunction,
nutRoughWallFunction, nutUSpaldingWallFunction, nutkWallFunction and nutkAtm-
WallFunction. The user can get the full list of wall function models using foamInfo:

foamToC -scalarBCs | grep nut

Within each wall function boundary condition the user can over-ride default settings for E,
κ and Cµ through optional E, kappa and Cmu keyword entries.

Having selected the particular wall functions on various wall patches in the nut file, the
user should select the following boundary conditions at wall patches for other turbulence
fields.

• epsilon field: apply the epsilonWallFunction to corresponding patches.

• omega field: apply the omegaWallFunction to corresponding patches.

• k, q or R field: apply kqRwallFunction to corresponding patches.

8.3 Transport/rheology models
The momentumTransport file includes any model for the viscous stress in a fluid. That in-
cludes turbulence models, described in the previous section 8.2, but also non-Newtonian and
visco-elastic models described in this section. These models are described as laminar, located
in $FOAM_SRC/MomentumTransportModels/momentumTransportModels/laminar, including:

• a family of generalisedNewtonian models for a non-uniform viscosity which is a function
of strain rate γ̇ =

√
2| symm(∇U)|, described in sections 8.3.1, 8.3.2, 8.3.3, 8.3.4, 8.3.5

and 8.3.6;

• a set of visco-elastic models, including Maxwell, Giesekus and PTT (Phan-Thien &
Tanner), described in sections 8.3.7, 8.3.8 and 8.3.9, respectively;

• the lambdaThixotropic model, described in section 8.3.10.

When turbulence modelling is selected in the momentumTransport file, the generalisedNew-
tonian model is used by default to calculate the molecular viscosity. The choice of gen-
eralisedNewtonian model, specified by the viscosityModel keyword, is set to Newtonian
by default, which simply uses the viscosity nu specified in the physicalProperties file. The
following example exposes the default settings used with turbulence modelling.

simulationType RAS

RAS
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{
model kEpsilon; // RAS model
turbulence on;
printCoeffs on;

// "laminar" model generalisedNewtonian is used by default
viscosityModel Newtonian; // default

}

While the viscosityModel entry is generally omitted when turbulence models are used, it
can be included to set any of the non-Newtonian generalisedNewtonian models.

When turbulence modelling is not selected, by setting the laminar simulation type, the
user can select any of the laminar models through the model keyword entry in the laminar
sub-dictionary, including the visco-elastic models. The laminar models are listed by the
following command.

foamToC -table laminarincompressibleMomentumTransportModel

If the generalisedNewtonian model is selected, the user must then specify the viscosity
model through the viscosityModel keyword as mentioned above. The viscosity models are
listed by the following command.

foamToC -table generalisedNewtonianViscosityModel

The example below shows how the the Bird-Carreau viscosity model is selected in a config-
uration without turbulence modelling.

simulationType laminar

laminar
{

model generalisedNewtonian;
viscosityModel BirdCarreau;
// ... followed by the BirdCarreau parameters

}

The laminar models still use the viscosity property ν (nu) specified in the physicalProperties
file, e.g.

viscosityModel constant;

nu 1.5e-05;

This viscosity is a single value which is constant in time and uniform over the solution
domain. The non-Newtonian models adopt ν as the zero strain-rate viscosity ν0. The visco-
elastic models incorporate a linear viscous stress using ν, in addition to stress calculated by
the respective models. The details of the models are provided in the following sections.
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8.3.1 Bird-Carreau model
The Bird-Carreau generalisedNewtonian model is

ν = ν∞ + (ν0 − ν∞) [1 + (kγ̇)a](n−1)/a (8.22)

where the coefficient a has a default value of 2. An example specification of the model in
momentumTransport is:

viscosityModel BirdCarreau;

nuInf 1e-05;
k 1;
n 0.5;

The constant, uniform viscosity at zero strain-rate, ν0, is specified by nu in the physicalProp-
erties file.

8.3.2 Cross Power Law model
The Cross Power Law generalisedNewtonian model is:

ν = ν∞ + ν0 − ν∞
1 + (mγ̇)n (8.23)

An example specification of the model in momentumTransport is:

viscosityModel CrossPowerLaw;

nuInf 1e-05;
m 1;
n 0.5;

The constant, uniform viscosity at zero strain-rate, ν0, is specified by nu in the physicalProp-
erties file.

8.3.3 Power Law model
The Power Law generalisedNewtonian model provides a function for viscosity, limited by
minimum and maximum values, νmin and νmax respectively. The function is:

ν = kγ̇n−1 νmin ≤ ν ≤ νmax (8.24)

An example specification of the model in momentumTransport is:

viscosityModel powerLaw;

nuMax 1e-03;
nuMin 1e-05;
k 1e-05;
n 0.5;
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8.3.4 Herschel-Bulkley model
The Herschel-Bulkley generalisedNewtonian model combines the effects of Bingham plastic
and power-law behaviour in a fluid. For low strain rates, the material is modelled as a very
viscous fluid with viscosity ν0. Beyond a threshold in strain-rate corresponding to threshold
stress τ0, the viscosity is described by a power law. The model is:

ν = min
(
ν0, τ0/γ̇ + kγ̇n−1

)
(8.25)

An example specification of the model in momentumTransport is:

viscosityModel HerschelBulkley;

tau0 0.01;
k 0.001;
n 0.5;

The constant, uniform viscosity at zero strain-rate, ν0, is specified in the physicalProperties
file.

8.3.5 Casson model
The Casson generalisedNewtonian model is a basic model used in blood rheology that spec-
ifies minimum and maximum viscosities, νmin and νmax respectively. Beyond a threshold in
strain-rate corresponding to threshold stress τ0, the viscosity is described by a “square-root”
relationship. The model is:

ν =
(√

τ0/γ̇ +
√
m
)2

νmin ≤ ν ≤ νmax (8.26)

An example specification of model parameters for blood is:

viscosityModel Casson;

m 3.934986e-6;
tau0 2.9032e-6;
nuMax 13.3333e-6;
nuMin 3.9047e-6;

8.3.6 General strain-rate function
A strainRateFunction generalisedNewtonian model exists that allows a user to specify vis-
cosity as a function of strain rate at run-time. It uses the same Function1 functionality to
specify the function of strain-rate, used by time varying properties in boundary conditions
described in section 6.4.4. An example specification of the model in momentumTransport is
shown below using the polynomial function:

viscosityModel strainRateFunction;

function polynomial ((0 0.1) (1 1.3));
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8.3.7 Maxwell model
The Maxwell laminar visco-elastic model solves an equation for the fluid stress tensor τ:

∂τ
∂t

+∇ • (Uτ) = 2 symm [τ •∇U]− 2νM
λ

symm(∇U)− 1
λ

τ (8.27)

where νM (nuM) is the “Maxwell” viscosity and λ (lambda) is the relaxation time. An example
specification of model parameters is shown below:

simulationType laminar;

laminar
{

model Maxwell;

MaxwellCoeffs
{

nuM 0.002;
lambda 0.03;

}
}

If an additional constant, uniform viscosity at zero strain-rate, ν0, is specified in the phys-
icalProperties file, the model becomes equivalent to an Oldroyd-B visco-elastic model. The
Maxwell model includes a multi-mode option where τ is a sum of stresses, each with an
associated relaxation time λ.

8.3.8 Giesekus model
The Giesekus laminar visco-elastic model is similar to the Maxwell model but includes an
additional “mobility” term in the equation for τ:

∂τ
∂t

+∇ • (Uτ) = 2 symm [τ •∇U]− 2νM
λ

symm(∇U)− 1
λ

τ − αG

νM
[τi • τi] (8.28)

where αG (alphaG) is the mobility parameter. An example specification of model parameters
is shown below:

simulationType laminar;

laminar
{

model Giesekus;

GiesekusCoeffs
{

nuM 0.002;
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lambda 0.03;
alphaG 0.1;

}
}

The Giesekus model includes a multi-mode option where τ is a sum of stresses, each with an
associated relaxation time λ and mobility coefficient αG.

8.3.9 Phan-Thien-Tanner (PTT) model
The Phan-Thien-Tanner (PTT) laminar visco-elastic model is also similar to the Maxwell
model but includes an additional “extensibility” term in the equation for τ, suitable for
polymeric liquids:

∂τ
∂t

+∇ • (Uτ) = 2 symm [τ •∇U]− 2νM
λ

symm(∇U)− 1
λ
exp

(
− ελ

νM
tr(τ)

)
τ (8.29)

where ε (epsilon) is the extensibility parameter. An example specification of model param-
eters is shown below:

simulationType laminar;

laminar
{

model PTT;

PTTCoeffs
{

nuM 0.002;
lambda 0.03;
epsilon 0.25;

}
}

The PTT model includes a multi-mode option where τ is a sum of stresses, each with an
associated relaxation time λ and extensibility coefficient ε.

8.3.10 Lambda thixotropic model
The Lambda Thixotropic laminar model calculates the evolution of a structural parameter
λ (lambda) according to:

∂λ

∂t
+∇ • (Uλ) = a(1− λ)b − cγ̇dλ (8.30)

with model coefficients a, b, c and d. The viscosity ν is then calculated according to:

ν = ν∞

1−Kλ2
(8.31)
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where the parameter K =
√
ν∞/ν0. The viscosities ν0 and ν∞ are limiting values corre-

sponding to λ = 1 and λ = 0.
An example specification of the model in momentumTransport is:

simulationType laminar;

laminar
{

model lambdaThixotropic;

lambdaThixotropicCoeffs
{

a 1;
b 2;
c 1e-3;
d 3;
nu0 0.1;
nuInf 1e-4;

}
}
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Index

/*...*/
C++ syntax, U-80

//
C++ syntax, U-80
OpenFOAM file syntax, U-100

# include
C++ syntax, U-80

#include
C++ syntax, U-72

bounded keyword, U-123
<delta>Coeffs keyword, U-240
<model>Coeffs keyword, U-238, U-240
1-dimensional mesh, U-150
1D mesh, U-150
2-dimensional mesh, U-150
2D mesh, U-150

0 directory, U-100

add post-processing, U-215
add keyword, U-200
addLayers keyword, U-164
addLayersControls keyword, U-164
adiabaticFlameT utility, U-98
adiabaticPerfectFluid model, U-234
adjointShapeOptimizationFoam solver, U-91
adjustableRunTime

keyword entry, U-51, U-117
adjustTimeStep keyword, U-50, U-118
adjustTimeStepToChemistry post-processing, U-

217
adjustTimeStepToCombustion post-processing, U-

217
age post-processing, U-213
agglomerator keyword, U-130
algorithm

SIMPLE, U-30
all keyword, U-176
alphaContactAngle

boundary condition, U-47
annulus keyword, U-175
ansysToFoam utility, U-93
applications, U-69
Apply button, U-204, U-208
applyBoundaryLayer utility, U-92
arc

keyword entry, U-154
As keyword, U-231
ascii

keyword entry, U-117
Auto Apply button, U-208
autoPatch utility, U-94
axes

right-handed, U-155
right-handed rectangular Cartesian, U-21

axi-symmetric cases, U-162
axi-symmetric mesh, U-150

background
process, U-24, U-83

backward
keyword entry, U-120

backward-facing step, U-20
basic

boundary conditions, U-196
beginTime keyword, U-118
binary

keyword entry, U-117
block

expansion ratio, U-156
blockMesh utility, U-93
blocking

keyword entry, U-82
blockMesh utility, U-153
blockMeshDict

dictionary, U-21, U-23, U-61, U-153
blocks keyword, U-23, U-153, U-155
boundary
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of a mesh, U-149
boundary

dictionary, U-149, U-153
boundary keyword, U-153, U-158
boundary condition

alphaContactAngle, U-47
calculated, U-196
cyclic, U-151
cyclic, U-151
directionMixed, U-196
empty, U-21, U-150
entrainmentPressure, U-197
fixedGradient, U-196
fixedValue, U-196, U-199
flowRateInletVelocity, U-39, U-40
inletOutlet, U-197
mixed, U-196
nonConformalCyclic, U-151
noSlip, U-26
patch, U-150
pressureInletOutletVelocity, U-197
processor, U-152
processor, U-152
setup, U-25
symmetry, U-151
symmetry, U-151
symmetryPlane, U-151, U-152
totalPressure, U-197
uniformFixedValue, U-199
wall, U-28
wall, U-47, U-150, U-152
wedge, U-150, U-162
zeroGradient, U-196

boundary conditions, U-191
basic, U-196
constraint, U-194
derived, U-196

boundaryProbes post-processing, U-218
boundaryField keyword, U-26
boundaryFoam solver, U-90
bounded keyword, U-123
Boussinesq model, U-234
box keyword, U-175
boxTurb utility, U-92
breaking of a dam, U-44
BSpline

keyword entry, U-154
buoyantKEpsilon model, U-239
burntProducts keyword, U-231

button
Apply, U-204, U-208
Auto Apply, U-208
Cache Mesh, U-31, U-206
Camera Parallel Projection, U-25, U-208
Choose Preset, U-206
Delete, U-205
Edit Color Legend Properties, U-33
Edit Color Map, U-206
Lights, U-207
Refresh Times, U-206
Rescale, U-32
Reset, U-205
Set Ambient Color, U-207

bXiProgress post-processing, U-217

C++ syntax
/*...*/, U-80
//, U-80
# include, U-80
#include, U-72

C1 keyword, U-232
C2 keyword, U-232
Cache Mesh button, U-31, U-206
cacheAgglomeration keyword, U-130
calculated

boundary condition, U-196
Camera window panel, U-208
Camera Parallel Projection button, U-25, U-208
case

management, U-132
cases, U-99
castellatedMesh keyword, U-164
castellatedMeshControls

dictionary, U-166, U-167, U-169
castellatedMeshControls keyword, U-164
ccm26ToFoam utility, U-93
CEI_ARCH

environment variable, U-227
CEI_HOME

environment variable, U-227
cell

expansion ratio, U-156
cellMax post-processing, U-216
cellMaxMag post-processing, U-216
cellMin post-processing, U-216
cellMinMag post-processing, U-216
cellLimited

keyword entry, U-121
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cells
dictionary, U-153

cellsAcrossSpan keyword, U-170
cellZone class, U-174
cellZone keyword, U-176
cellZones file, U-174
cfx4ToFoam utility, U-93
cfx4ToFoam utility, U-181
changeDictionary utility, U-92
checkMesh utility, U-94
checkMesh post-processing, U-219
checkMesh utility, U-182
chemFoam solver, U-90
chemkinToFoam utility, U-98
Choose Preset button, U-206
class

cellZone, U-174
faceZone, U-174
flipMap, U-174
pointZone, U-174
vector, U-103

class keyword, U-102
clear keyword, U-176
clockTime

keyword entry, U-117
coded keyword, U-199
coefficientWilkeMulticomponentMixture

keyword entry, U-231
collapseEdges utility, U-95
Color Arrays window panel, U-208
Color By menu, U-207
Color Legend window panel, U-207
Color Palette window panel, U-208
Color Scale window panel, U-206
compressibleMultiphaseVoFMixtureThermo model,

U-230
combinePatchFaces utility, U-95
comments, U-80
Common menu, U-34
Common and Data Analysis menu, U-34
commsType keyword, U-82
components post-processing, U-66, U-213
compressibleMultiphaseVoF solver module, U-89
compressibleVoF solver module, U-89
consistent keyword, U-30
constant directory, U-99
constant

keyword entry, U-49
constant keyword, U-199

constraint
boundary conditions, U-194

Contour
menu entry, U-37

control
of global parameters, U-114
of time, U-115

controlDict
dictionary, U-29, U-51, U-64, U-99, U-187

controlDict file, U-114
controls

global, U-114
overriding global, U-114

convertToMeters keyword, U-153
convertToMeters keyword, U-153
coordinate system, U-21
corrected

keyword entry, U-124, U-125
Courant number, U-50
CourantNo post-processing, U-213
Cp keyword, U-232
cpuTime

keyword entry, U-117
CrankNicolson

keyword entry, U-120
createBaffles utility, U-94
createExternalCoupledPatchGeometry utility, U-92
createPatch utility, U-94
createZones utility, U-94
createNonConformalCouples utility, U-94
createNonConformalCouples utility, U-151
createPatch utility, U-179
createZones utility, U-177
csv

keyword entry, U-117
Current Time Controls menu, U-31, U-205
cutPlaneSurface post-processing, U-220
Cv keyword, U-232
cyclic

boundary condition, U-151
cyclic

boundary condition, U-151
cylinder keyword, U-175
cylindrical post-processing, U-213

dam
breaking of a, U-44

datToFoam utility, U-93
ddt post-processing, U-213
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ddtSchemes keyword, U-29, U-30
DeardorffDiffStress model, U-240
DebugSwitches keyword, U-114
decomposePar utility, U-98
decomposePar utility, U-83, U-85
decomposeParDict

dictionary, U-84
decomposition

of field, U-83
of mesh, U-83

defaultPatch keyword, U-153
defaultValues keyword, U-48
deformedGeom utility, U-94
Delete button, U-205
delta keyword, U-240
deltaT keyword, U-116
dependencies, U-72
dependency lists, U-72
derived

boundary conditions, U-196
diagonal

keyword entry, U-127, U-129
DIC

keyword entry, U-129
DICGaussSeidel

keyword entry, U-129
dictionary

PIMPLE, U-132
SIMPLE, U-132
blockMeshDict, U-21, U-23, U-61, U-153
boundary, U-149, U-153
castellatedMeshControls, U-166, U-167, U-

169
cells, U-153
controlDict, U-29, U-51, U-64, U-99, U-187
decomposeParDict, U-84
faces, U-149, U-153
fvSchemes, U-52, U-99, U-118
fvSolution, U-99, U-126
fvSchemes, U-51
momentumTransport, U-27, U-50, U-237
neighbour, U-149
owner, U-149
physicalProperties, U-26, U-63, U-229
points, U-149, U-153

difference keyword, U-176
DILU

keyword entry, U-129
dimension

checking, U-104
dimensional units, U-103
DimensionedConstants keyword, U-114
dimensions keyword, U-26
directionMixed

boundary condition, U-196
directory

0, U-100
Make, U-73
constant, U-99
etc, U-114
polyMesh, U-99, U-148
processorN , U-85
run, U-19, U-99
system, U-99

Display window panel, U-24, U-204, U-206
distance

keyword entry, U-169
distributed keyword, U-87
div post-processing, U-213
div(phi,e) keyword, U-122
div(phi,U) keyword, U-122
divide post-processing, U-215
divSchemes keyword, U-43, U-118
Documentation keyword, U-114
dsmcInitialise utility, U-92
dsmcFields post-processing, U-216
dsmcFoam solver, U-91
dynamicLagrangian model, U-241
dynamicKEqn model, U-241

edgeGrading keyword, U-156
edges keyword, U-153
Edit menu, U-208
Edit Color Legend Properties button, U-33
Edit Color Map button, U-206
electrostaticFoam solver, U-91
empty

boundary condition, U-21, U-150
endTime keyword, U-30, U-116
energy keyword, U-230, U-235
engineCompRatio utility, U-95
engineSwirl utility, U-92
ensight

keyword entry, U-117
ENSIGHT7_INPUT

environment variable, U-227
ENSIGHT7_READER

environment variable, U-227
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ensightFoamReader utility, U-227
enstrophy post-processing, U-213
entrainmentPressure

boundary condition, U-197
environment variable

CEI_ARCH, U-227
CEI_HOME, U-227
ENSIGHT7_INPUT, U-227
ENSIGHT7_READER, U-227
FOAM_APPLICATION, U-110
FOAM_CASENAME, U-110
FOAM_CASE, U-110
FOAM_FILEHANDLER, U-86
FOAM_RUN, U-99
WM_ARCH_OPTION, U-75
WM_ARCH, U-75
WM_CC, U-76
WM_CFLAGS, U-76
WM_COMPILER_LIB_ARCH, U-76
WM_COMPILER_TYPE, U-76
WM_COMPILER, U-76
WM_COMPILE_OPTION, U-76
WM_CXXFLAGS, U-76
WM_CXX, U-76
WM_DIR, U-76
WM_LABEL_OPTION, U-76
WM_LABEL_SIZE, U-76
WM_LDFLAGS, U-76
WM_LINK_LANGUAGE, U-76
WM_MPLIB, U-76
WM_OPTIONS, U-76
WM_OSTYPE, U-76
WM_PRECISION_OPTION, U-76
WM_PROJECT_DIR, U-75
WM_PROJECT_INST_DIR, U-75
WM_PROJECT_USER_DIR, U-75
WM_PROJECT_VERSION, U-75
WM_PROJECT, U-75
WM_THIRD_PARTY_DIR, U-75
wmake, U-75

equationOfState keyword, U-230
equilibriumFlameT utility, U-98
equilibriumCO utility, U-98
errorReduction keyword, U-173
etc directory, U-114
Euler

keyword entry, U-120
exponentialSqrRamp keyword, U-200
expansionRatio keyword, U-172

extrude2DMesh utility, U-93
extrudeMesh utility, U-93
extrudeToRegionMesh utility, U-93

face keyword, U-175
faceAgglomerate utility, U-92
faceZoneAverage post-processing, U-219
faceZoneFlowRate post-processing, U-219
faceAreaPair

keyword entry, U-130
faces

dictionary, U-149, U-153
faceZone class, U-174
faceZones file, U-174
FDIC

keyword entry, U-129
featureAngle keyword, U-172
features keyword, U-166, U-167
field

decomposition, U-83
field keyword, U-211
fieldAverage post-processing, U-214
fields

mapping, U-187
fields keyword, U-211
file

Make/files, U-74
cellZones, U-174
controlDict, U-114
faceZones, U-174
files, U-73
g, U-50
options, U-73
pointZones, U-174
setConstraintTypes, U-194
snappyHexMeshDict, U-164
handler, U-85, U-86
parallel I/O, U-85

file format, U-100
fileModificationChecking keyword, U-82
fileModificationSkew keyword, U-82
files file, U-73
film solver module, U-89
Filters menu, U-34
finalLayerThickness keyword, U-172
financialFoam solver, U-91
firstLayerThickness keyword, U-172
firstTime keyword, U-116
fixed
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keyword entry, U-117
fixedGradient

boundary condition, U-196
fixedValue

boundary condition, U-196, U-199
flattenMesh utility, U-94
flip keyword, U-175
flipMap class, U-174
flipMap keyword, U-176
floatTransfer keyword, U-82
flow

free surface, U-44
flowType post-processing, U-214
flowRateInletVelocity

boundary condition, U-39, U-40
fluent3DMeshToFoam utility, U-93
fluentMeshToFoam utility, U-93
fluentMeshToFoam utility, U-181
fluid solver module, U-88
fluidMulticomponentThermo model, U-230
fluidSolver solver module, U-90
fluidThermo model, U-230
OpenFOAM

cases, U-99
foamDataToFluent utility, U-96, U-226
foamDictionary utility, U-98
foamFormatConvert utility, U-98
foamListTimes utility, U-98
foamMeshToFluent utility, U-93
foamPostProcess utility, U-95
foamSetupCHT utility, U-92
foamToC utility, U-98
foamToEnsight utility, U-96, U-226
foamToEnsightParts utility, U-96, U-226
foamToGMV utility, U-96, U-226
foamToStarMesh utility, U-93
foamToSurface utility, U-93
foamToTetDualMesh utility, U-96, U-226
foamToVTK utility, U-96, U-226
FOAM_APPLICATION

environment variable, U-110
FOAM_CASE

environment variable, U-110
FOAM_CASENAME

environment variable, U-110
FOAM_FILEHANDLER

environment variable, U-86
FOAM_RUN

environment variable, U-99

foamCleanCase script, U-132
foamCloneCase script, U-132, U-133
foamCorrectVrt script, U-185
foamDictionary utility, U-133
FoamFile keyword, U-102
foamFormatConvert utility, U-86
foamGet script, U-136
foamInfo script, U-39, U-196
foamListTimes utility, U-40, U-132
foamMultiRun solver, U-17, U-90
foamPostProcess utility, U-210
foamRun solver, U-17, U-30, U-90
foamSearch script, U-120
foamToC utility, U-138
foamUnits utility, U-140
foamVTKSeries utility, U-226
forceCoeffsCompressible post-processing, U-215
forceCoeffsIncompressible post-processing, U-215
forcesCompressible post-processing, U-215
forcesIncompressible post-processing, U-215
foreground

process, U-24
format keyword, U-102
fuel keyword, U-231
functions solver module, U-90
functions keyword, U-118
fvSchemes

dictionary, U-51
fvSchemes

dictionary, U-52, U-99, U-118
fvSchemes

menu entry, U-65
fvSolution

dictionary, U-99, U-126

g file, U-50
gambitToFoam utility, U-93
gambitToFoam utility, U-181
GAMG

keyword entry, U-65, U-127, U-129
Gauss cubic

keyword entry, U-121
GaussSeidel

keyword entry, U-129
General window panel, U-208
general

keyword entry, U-117
generalisedNewtonian model, U-242, U-244, U-

245
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geometric-algebraic multi-grid, U-129
geometry keyword, U-161, U-164
Giesekus model, U-242
global

controls, U-114
controls overriding, U-114

gmshToFoam utility, U-93
gnuplot

keyword entry, U-117
grad post-processing, U-214
gradient

Gauss’s theorem, U-65
least square fit, U-65
least squares method, U-65

gradSchemes keyword, U-43, U-118
graphCell post-processing, U-216
graphCutLayerAverage post-processing, U-216
graphPatchCutLayerAverage post-processing, U-

216
graphUniform post-processing, U-216, U-221
graphCellFace post-processing, U-216
graphFace post-processing, U-216
graphFormat keyword, U-117
graphLayerAverage post-processing, U-216

halfCosineRamp keyword, U-200
heheuPsiThermo

keyword entry, U-231
Help menu, U-207
hemisphere keyword, U-175
hePsiThermo

keyword entry, U-230
heRhoThermo

keyword entry, U-230
heSolidThermo

keyword entry, U-231
hexRef8 keyword, U-178
Hf keyword, U-232
hierarchical

keyword entry, U-84, U-85
highCpCoeffs keyword, U-233
homogeneousMixture keyword, U-231

icoFoam solver, U-91
icoPolynomial model, U-234
icoTabulated model, U-234
ideasUnvToFoam utility, U-93
ideasToFoam utility, U-181
inhomogeneousMixture keyword, U-231

incompressibleDenseParticleFluid solver module,
U-88

incompressibleDriftFlux solver module, U-89
incompressibleFluid solver module, U-20, U-88
incompressibleMultiphaseVoF solver module, U-89
incompressiblePerfectGas model, U-234
incompressibleVoF solver module, U-44, U-89
Information window panel, U-204
InfoSwitches keyword, U-114
inGroups keyword, U-152
inletOutlet

boundary condition, U-197
inletValue keyword, U-197
inotify

keyword entry, U-82
inotifyMaster

keyword entry, U-82
inside

keyword entry, U-169
insideCells utility, U-94
insidePoint keyword, U-166, U-168
insideSpan

keyword entry, U-170
insideSurface keyword, U-175
interfaceHeight post-processing, U-218
internalProbes post-processing, U-218
internalField keyword, U-26
interpolationSchemes keyword, U-118
intersection keyword, U-176
invert keyword, U-176
isoSurface post-processing, U-220
isothermalFilm solver module, U-89
isothermalFluid solver module, U-89
iterations

maximum, U-128

kEpsilon model, U-239
kEpsilonLopesdaCosta model, U-239
kEqn model, U-241
kOmega model, U-239
kOmega2006 model, U-239
kOmegaSST model, U-239, U-240
kOmegaSSTDES model, U-241
kOmegaSSTLM model, U-239, U-240
kOmegaSSTSAS model, U-239, U-240
kEpsilon

keyword entry, U-27
keyword

As, U-231
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C1, U-232
C2, U-232
Cp, U-232
Cv, U-232
DebugSwitches, U-114
DimensionedConstants, U-114
Documentation, U-114
FoamFile, U-102
Hf, U-232
InfoSwitches, U-114
MULESCorr, U-50, U-53
N2, U-231
O2, U-231
OptimisationSwitches, U-114
Pr, U-231
SIMPLE, U-30, U-31
Tcommon, U-233
Thigh, U-233
Tlow, U-233
Tr, U-232
Ts, U-231
UnitConversions, U-114
bounded, U-123
addLayersControls, U-164
addLayers, U-164
add, U-200
adjustTimeStep, U-50, U-118
agglomerator, U-130
all, U-176
annulus, U-175
beginTime, U-118
blocks, U-23, U-153, U-155
boundaryField, U-26
boundary, U-153, U-158
bounded, U-123
box, U-175
burntProducts, U-231
cacheAgglomeration, U-130
castellatedMeshControls, U-164
castellatedMesh, U-164
cellZone, U-176
cellsAcrossSpan, U-170
class, U-102
clear, U-176
coded, U-199
commsType, U-82
consistent, U-30
constant, U-199
convertToMeters, U-153

convertToMeters, U-153
cylinder, U-175
ddtSchemes, U-29, U-30
defaultPatch, U-153
defaultValues, U-48
deltaT, U-116
delta, U-240
difference, U-176
dimensions, U-26
distributed, U-87
div(phi,U), U-122
div(phi,e), U-122
divSchemes, U-43, U-118
edgeGrading, U-156
edges, U-153
endTime, U-30, U-116
energy, U-230, U-235
equationOfState, U-230
errorReduction, U-173
exponentialSqrRamp, U-200
expansionRatio, U-172
face, U-175
featureAngle, U-172
features, U-166, U-167
fields, U-211
field, U-211
fileModificationChecking, U-82
fileModificationSkew, U-82
finalLayerThickness, U-172
firstLayerThickness, U-172
firstTime, U-116
flipMap, U-176
flip, U-175
floatTransfer, U-82
format, U-102
fuel, U-231
functions, U-118
geometry, U-161, U-164
gradSchemes, U-43, U-118
graphFormat, U-117
halfCosineRamp, U-200
hemisphere, U-175
hexRef8, U-178
highCpCoeffs, U-233
homogeneousMixture, U-231
inGroups, U-152
inhomogeneousMixture, U-231
inletValue, U-197
insidePoint, U-166, U-168
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insideSurface, U-175
internalField, U-26
interpolationSchemes, U-118
intersection, U-176
invert, U-176
laplacianSchemes, U-118
layers, U-171
leastSquares, U-65
levels, U-169
level, U-169
libs, U-82, U-116
linearRamp, U-200
location, U-102
lowCpCoeffs, U-233
maxAlphaCo, U-50
maxBoundarySkewness, U-173
maxConcave, U-173
maxCo, U-50, U-118
maxDeltaT, U-51
maxFaceThicknessRatio, U-172
maxGlobalCells, U-166
maxInternalSkewness, U-173
maxIter, U-128
maxLocalCells, U-166
maxNonOrtho, U-173
maxPostSweeps, U-130
maxPreSweeps, U-130
maxThicknessToMedialRatio, U-172
maxThreadFileBufferSize, U-86
mergeLevels, U-130
mergePatchPairs, U-153
mergeTolerance, U-164
meshQualityControls, U-164
method, U-84
minArea, U-173
minDeterminant, U-173
minFaceWeight, U-173
minFlatness, U-173
minMedianAxisAngle, U-172
minRefinementCells, U-166
minTetQuality, U-173
minThickness, U-172
minTriangleTwist, U-173
minTwist, U-173
minVolRatio, U-173
minVol, U-173
mixture, U-231
model, U-27, U-237–U-240
mode, U-169

molWeight, U-235
momentumPredictor, U-132
moveUpdate, U-175
mu, U-231
myProcNo, U-152
nAlphaCorr, U-53
nBufferCellsNoExtrude, U-172
nCellsBetweenLevels, U-166
nCorrectors, U-132
nFaces, U-149
nFinestSweeps, U-130
nGrow, U-172
nLayerIter, U-172
nMoles, U-235
nNonOrthogonalCorrectors, U-132
nPostSweeps, U-130
nPreSweeps, U-130
nRelaxIter, U-170, U-172
nRelaxedIter, U-172
nSmoothNormals, U-172
nSmoothPatch, U-170
nSmoothScale, U-173
nSmoothSurfaceNormals, U-172
nSmoothThickness, U-172
nSolveIter, U-170
name, U-162
neighbProcNo, U-152
neighbourPatch, U-159
nonUniformTable, U-200
normalise, U-200
normal, U-176
numberOfSubdomains, U-84
nu, U-27, U-49
n, U-85
object, U-102
one, U-199
order, U-85
orient, U-176
oxidant, U-231
pRefCell, U-132
pRefValue, U-132
patchMap, U-188
patch, U-176
periodic, U-176
plane, U-176
polynomial, U-199
postSweepsLevelMultiplier, U-130
preSweepsLevelMultiplier, U-130
preconditioner, U-127, U-129
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pressure, U-63
printCoeffs, U-237, U-240
processorWeights, U-84
probeLocations, U-221
processorWeights, U-85
profile, U-40
project, U-161
purgeWrite, U-117
quadraticRamp, U-200
quarterCosineRamp, U-200
quarterSineRamp, U-200
refinementRegions, U-166, U-169
refinementSurfaces, U-166, U-167
refinementRegions, U-169
regionSolvers, U-116
relTol, U-65, U-127, U-128
relativeSizes, U-172
relaxationFactors, U-30
relaxed, U-173
remove, U-176
repeat, U-200
residualControl, U-31, U-42
resolveFeatureAngle, U-166, U-167
reverseRamp, U-200
roots, U-87
runTimeModifiable, U-118
scale, U-200
set, U-176
sigma, U-48
simpleGrading, U-156
simulationType, U-27, U-50, U-237
sine, U-199
smoother, U-130
snGradSchemes, U-118
snapControls, U-164
snap, U-164
solvers, U-127
solver, U-29, U-65, U-116, U-127
specie, U-235
sphere, U-175
squarePulse, U-199
square, U-199
startFace, U-149
startFrom, U-29, U-116
startTime, U-29, U-116
stopAt, U-116
strategy, U-84
surface, U-176
tableFile, U-199

table, U-199
thermoType, U-229
thermodynamics, U-235
thickness, U-172
timeFormat, U-117
timePrecision, U-117
timeScheme, U-118
tolerance, U-65, U-127, U-128, U-170
traction, U-63
transport, U-230, U-235
truncatedCone, U-175
turbulence, U-27, U-237, U-240
type, U-230
uniformTable, U-200
uniformValue, U-199
union, U-177
unitSet, U-114
valueFraction, U-196
values, U-48
value, U-26, U-196
version, U-102
vertices, U-23, U-153
veryInhomogeneousMixture, U-231
viscosityModel, U-27, U-242, U-243
viscosityModel, U-49
wallDist, U-119
writeCompression, U-117
writeControl, U-30, U-51, U-117
writeFormat, U-117
writeInterval, U-30, U-117
writePrecision, U-117
write, U-177
zero, U-199
zones, U-48
<delta>Coeffs, U-240
<model>Coeffs, U-238, U-240

keyword entry
BSpline, U-154
CrankNicolson, U-120
DICGaussSeidel, U-129
DIC, U-129
DILU, U-129
Euler, U-120
FDIC, U-129
GAMG, U-65, U-127, U-129
Gauss cubic, U-121
GaussSeidel, U-129
LES, U-237
LUST, U-122
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PBiCGStab, U-127
PBiCG, U-127
PCG, U-127
RAS, U-27, U-237
adjustableRunTime, U-51, U-117
arc, U-154
ascii, U-117
backward, U-120
binary, U-117
blocking, U-82
cellLimited, U-121
clockTime, U-117
coefficientWilkeMulticomponentMixture,

U-231
constant, U-49
corrected, U-124, U-125
cpuTime, U-117
csv, U-117
diagonal, U-127, U-129
distance, U-169
ensight, U-117
faceAreaPair, U-130
fixed, U-117
general, U-117
gnuplot, U-117
hePsiThermo, U-230
heRhoThermo, U-230
heSolidThermo, U-231
heheuPsiThermo, U-231
hierarchical, U-84, U-85
inotifyMaster, U-82
inotify, U-82
insideSpan, U-170
inside, U-169
kEpsilon, U-27
laminarBL, U-40
laminar, U-237
latestTime, U-116
leastSquares, U-121
limitedLinear, U-122
limited, U-124
linearUpwind, U-122
linear, U-122
line, U-154
localEuler, U-120
masterUncollated, U-85
multicomponentMixture, U-231
multivariateSelection, U-123
nextWrite, U-116

noWriteNow, U-116
nonBlocking, U-82
none, U-119, U-129
orthogonal, U-124
outside, U-169
polyLine, U-154
pureMixture, U-231
raw, U-117
runTime, U-117
scheduled, U-82
scientific, U-117
scotch, U-84
simple, U-84, U-85
smoothSolver, U-127
spline, U-154
startTime, U-29, U-116
steadyState, U-29, U-30, U-120
symGaussSeidel, U-129
timeStampMaster, U-82
timeStamp, U-82
timeStep, U-30, U-117
turbulentBL, U-40
uncollated, U-85
uncorrected, U-125
upwind, U-122
valueMulticomponentMixture, U-231
vtk, U-117
writeNow, U-116

kivaToFoam utility, U-93
kkLOmega model, U-239

LamBremhorstKE model, U-238
Lambda2 post-processing, U-214
lambdaThixotropic model, U-242
laminar model, U-247
laminar

keyword entry, U-237
laminarBL

keyword entry, U-40
laplacianFoam solver, U-91
laplacianSchemes keyword, U-118
latestTime

keyword entry, U-116
LaunderSharmaKE model, U-238, U-239
layers keyword, U-171
leastSquares

keyword entry, U-121
leastSquares keyword, U-65
LES
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keyword entry, U-237
level keyword, U-169
levels keyword, U-169
libraries, U-69
library

PVFoamReader, U-203
vtkPVFoam, U-203

libs keyword, U-82, U-116
LienCubicKE model, U-238
LienLeschziner model, U-238
Lights button, U-207
limited

keyword entry, U-124
limitedLinear

keyword entry, U-122
line

keyword entry, U-154
linear model, U-234
linear

keyword entry, U-122
linearRamp keyword, U-200
linearUpwind

keyword entry, U-122
localEuler

keyword entry, U-120
location keyword, U-102
log post-processing, U-214
lowCpCoeffs keyword, U-233
LRR model, U-238, U-239
LUST

keyword entry, U-122

MachNo post-processing, U-214
mag post-processing, U-37, U-214
magSqr post-processing, U-214
magneticFoam solver, U-91
Make directory, U-73
make script, U-71
Make/files file, U-74
mapFields utility, U-92
mapFieldsPar utility, U-92
mapFields utility, U-187
mapping

fields, U-187
massFractions post-processing, U-214
masterUncollated

keyword entry, U-85
maxAlphaCo keyword, U-50
maxBoundarySkewness keyword, U-173

maxCo keyword, U-50, U-118
maxConcave keyword, U-173
maxDeltaT keyword, U-51
maxFaceThicknessRatio keyword, U-172
maxGlobalCells keyword, U-166
maximum iterations, U-128
maxInternalSkewness keyword, U-173
maxIter keyword, U-128
maxLocalCells keyword, U-166
maxNonOrtho keyword, U-173
maxPostSweeps keyword, U-130
maxPreSweeps keyword, U-130
maxThicknessToMedialRatio keyword, U-172
maxThreadFileBufferSize keyword, U-86
Maxwell model, U-242
mdInitialise utility, U-92
mdEquilibrationFoam solver, U-91
mdFoam solver, U-91
menu

Color By, U-207
Common and Data Analysis, U-34
Common, U-34
Current Time Controls, U-31, U-205
Edit, U-208
Filters, U-34
Help, U-207
VCR Controls, U-31, U-205
View, U-204, U-207

menu entry
Contour, U-37
Save Animation, U-209
Save Screenshot, U-209
Settings, U-208
Slice, U-34
Solid Color, U-207
Toolbars, U-207
View Settings, U-207
Wireframe, U-207
fvSchemes, U-65

mergeBaffles utility, U-94
mergeMeshes utility, U-94
mergeLevels keyword, U-130
mergePatchPairs keyword, U-153
mergeTolerance keyword, U-164
mesh

1-dimensional, U-150
1D, U-150
2-dimensional, U-150
2D, U-150
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axi-symmetric, U-150
block structured, U-153
boundary, U-149
data, U-148
decomposition, U-83
description, U-147
generation, U-153, U-163
grading, U-153, U-156
split-hex, U-163
Stereolithography (STL), U-163
surface, U-163
zone, U-174

Mesh Parts window panel, U-24
meshQualityControls keyword, U-164
message passing interface

openMPI, U-86
method keyword, U-84
mhdFoam solver, U-91
minArea keyword, U-173
minDeterminant keyword, U-173
minFaceWeight keyword, U-173
minFlatness keyword, U-173
minMedianAxisAngle keyword, U-172
minRefinementCells keyword, U-166
minTetQuality keyword, U-173
minThickness keyword, U-172
minTriangleTwist keyword, U-173
minTwist keyword, U-173
minVol keyword, U-173
minVolRatio keyword, U-173
mirrorMesh utility, U-94
mixed

boundary condition, U-196
mixture keyword, U-231
mixtureAdiabaticFlameT utility, U-98
mode keyword, U-169
model

Boussinesq, U-234
DeardorffDiffStress, U-240
Giesekus, U-242
LRR, U-238, U-239
LamBremhorstKE, U-238
LaunderSharmaKE, U-238, U-239
LienCubicKE, U-238
LienLeschziner, U-238
Maxwell, U-242
PTT, U-242
PengRobinsonGas, U-234
RNGkEpsilon, U-238, U-239

SSG, U-238, U-239
ShihQuadraticKE, U-238
Smagorinsky, U-240
SpalartAllmarasDDES, U-240
SpalartAllmarasDES, U-240
SpalartAllmarasIDDES, U-241
SpalartAllmaras, U-238, U-239
WALE, U-241
adiabaticPerfectFluid, U-234
buoyantKEpsilon, U-239
compressibleMultiphaseVoFMixtureThermo,

U-230
dynamicKEqn, U-241
dynamicLagrangian, U-241
fluidMulticomponentThermo, U-230
fluidThermo, U-230
generalisedNewtonian, U-242, U-244, U-245
icoPolynomial, U-234
icoTabulated, U-234
incompressiblePerfectGas, U-234
kEpsilonLopesdaCosta, U-239
kEpsilon, U-239
kEqn, U-241
kOmegaSSTDES, U-241
kOmegaSSTLM, U-239, U-240
kOmegaSSTSAS, U-239, U-240
kOmega2006, U-239
kOmegaSST, U-239, U-240
kOmega, U-239
kkLOmega, U-239
lambdaThixotropic, U-242
laminar, U-247
linear, U-234
perfectFluid, U-234
perfectGas, U-235
psiThermo, U-230
psiuMulticomponentThermo, U-230
qZeta, U-239
rPolynomial, U-235
realizableKE, U-239, U-240
rhoConst, U-235
rhoTabulated, U-235
rhoThermo, U-230
solidThermo, U-230
solidDisplacementThermo, U-230
v2f, U-239, U-240

model keyword, U-27, U-237–U-240
modular solver, U-17

VoFSolver, U-90
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XiFluid, U-88
compressibleMultiphaseVoF, U-89
compressibleVoF, U-89
film, U-89
fluidSolver, U-90
fluid, U-88
functions, U-90
incompressibleDenseParticleFluid, U-88
incompressibleDriftFlux, U-89
incompressibleFluid, U-20, U-88
incompressibleMultiphaseVoF, U-89
incompressibleVoF, U-44, U-89
isothermalFilm, U-89
isothermalFluid, U-89
movingMesh, U-90
multicomponentFluid, U-88
multiphaseEuler, U-89
multiphaseVoFSolver, U-90
shockFluid, U-88
solidDisplacement, U-58, U-89
solid, U-89
twoPhaseSolver, U-90
twoPhaseVoFSolver, U-90

moleFractions post-processing, U-214
molWeight keyword, U-235
momentumPredictor keyword, U-132
momentumTransport

dictionary, U-27, U-50, U-237
moveUpdate keyword, U-175
movingMesh solver module, U-90
MPI

openMPI, U-86
mshToFoam utility, U-93
mu keyword, U-231
MULESCorr keyword, U-50, U-53
multiValveEngineState post-processing, U-219
multicomponentFluid solver module, U-88
multicomponentMixture

keyword entry, U-231
multigrid

geometric-algebraic, U-129
multiphaseEuler solver module, U-89
multiphaseVoFSolver solver module, U-90
multiply post-processing, U-215
multivariateSelection

keyword entry, U-123
myProcNo keyword, U-152

n keyword, U-85

N2 keyword, U-231
nAlphaCorr keyword, U-53
name keyword, U-162
nBufferCellsNoExtrude keyword, U-172
nCellsBetweenLevels keyword, U-166
nCorrectors keyword, U-132
neighbour

dictionary, U-149
neighbourPatch keyword, U-159
neighbProcNo keyword, U-152
netgenNeutralToFoam utility, U-93
nextWrite

keyword entry, U-116
nFaces keyword, U-149
nFinestSweeps keyword, U-130
nGrow keyword, U-172
nLayerIter keyword, U-172
nMoles keyword, U-235
nNonOrthogonalCorrectors keyword, U-132
noise utility, U-95
non-conformal coupling, U-151
nonBlocking

keyword entry, U-82
nonConformalCyclic

boundary condition, U-151
none

keyword entry, U-119, U-129
nonUniformTable keyword, U-200
normal keyword, U-176
normalise keyword, U-200
noSlip

boundary condition, U-26
noWriteNow

keyword entry, U-116
nPostSweeps keyword, U-130
nPreSweeps keyword, U-130
nRelaxedIter keyword, U-172
nRelaxIter keyword, U-170, U-172
nSmoothNormals keyword, U-172
nSmoothPatch keyword, U-170
nSmoothScale keyword, U-173
nSmoothSurfaceNormals keyword, U-172
nSmoothThickness keyword, U-172
nSolveIter keyword, U-170
nu keyword, U-27, U-49
numberOfSubdomains keyword, U-84

O2 keyword, U-231
objToVTK utility, U-94
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object keyword, U-102
one keyword, U-199
Opacity text box, U-207
OpenFOAM

applications, U-69
file format, U-100
libraries, U-69

OpenFOAM file syntax
//, U-100

openMPI
message passing interface, U-86
MPI, U-86

OptimisationSwitches keyword, U-114
Options window, U-208
options file, U-73
order keyword, U-85
orient keyword, U-176
orthogonal

keyword entry, U-124
outside

keyword entry, U-169
owner

dictionary, U-149
oxidant keyword, U-231

paraFoam, U-203
paraFoam, U-24
parallel

running, U-83
parallel I/O, U-85

file handler, U-85
threading support, U-86

Parameters window panel, U-205
ParaView, U-24
particleTracks utility, U-96
particles post-processing, U-219
patch

groups, U-152
patch

boundary condition, U-150
patch keyword, U-176
patch selection, U-192
patchAverage post-processing, U-219
patchDifference post-processing, U-219
patchFlowRate post-processing, U-219
patchIntegrate post-processing, U-219
patchSummary utility, U-98
patchMap keyword, U-188
patchSurface post-processing, U-220

PBiCG
keyword entry, U-127

PBiCGStab
keyword entry, U-127

PCG
keyword entry, U-127

pdfPlot utility, U-96
PDRFoam solver, U-91
PecletNo post-processing, U-214
PengRobinsonGas model, U-234
perfectFluid model, U-234
perfectGas model, U-235
periodic keyword, U-176
phaseForces post-processing, U-218
phaseScalarTransport post-processing, U-219
phaseMap post-processing, U-218
physicalProperties

dictionary, U-26, U-63, U-229
PIMPLE

dictionary, U-132
Pipeline Browser window, U-24, U-204
plane keyword, U-176
plot3dToFoam utility, U-94
points

dictionary, U-149, U-153
pointZone class, U-174
pointZones file, U-174
polyDualMesh utility, U-94
polyLine

keyword entry, U-154
polyMesh directory, U-99, U-148
polynomial keyword, U-199
populationBalanceMoments post-processing, U-

218
populationBalanceSetPhaseSizeDistribution post-

processing, U-218
populationBalanceSetSizeDistribution post-

processing, U-218
populationBalanceSizeDistribution post-processing,

U-218
porousSimpleFoam solver, U-91
post-processing, U-203

CourantNo, U-213
Lambda2, U-214
MachNo, U-214
PecletNo, U-214
Qdot, U-217
Q, U-214
XiReactionRate, U-217
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add, U-215
adjustTimeStepToChemistry, U-217
adjustTimeStepToCombustion, U-217
age, U-213
bXiProgress, U-217
boundaryProbes, U-218
cellMaxMag, U-216
cellMax, U-216
cellMinMag, U-216
cellMin, U-216
checkMesh, U-219
components, U-66, U-213
cutPlaneSurface, U-220
cylindrical, U-213
ddt, U-213
divide, U-215
div, U-213
dsmcFields, U-216
enstrophy, U-213
faceZoneAverage, U-219
faceZoneFlowRate, U-219
fieldAverage, U-214
flowType, U-214
forceCoeffsCompressible, U-215
forceCoeffsIncompressible, U-215
forcesCompressible, U-215
forcesIncompressible, U-215
grad, U-214
graphCellFace, U-216
graphFace, U-216
graphLayerAverage, U-216
graphCell, U-216
graphCutLayerAverage, U-216
graphPatchCutLayerAverage, U-216
graphUniform, U-216, U-221
interfaceHeight, U-218
internalProbes, U-218
isoSurface, U-220
log, U-214
magSqr, U-214
mag, U-37, U-214
massFractions, U-214
moleFractions, U-214
multiValveEngineState, U-219
multiply, U-215
particles, U-219
patchSurface, U-220
patchAverage, U-219
patchDifference, U-219

patchFlowRate, U-219
patchIntegrate, U-219
phaseMap, U-218
phaseForces, U-218
phaseScalarTransport, U-219
populationBalanceMoments, U-218
populationBalanceSetPhaseSizeDistribution,

U-218
populationBalanceSetSizeDistribution, U-218
populationBalanceSizeDistribution, U-218
power, U-214
probes, U-218, U-220
randomise, U-214
reactionRates, U-217
reconstruct, U-214
removeObjects, U-217
residuals, U-216, U-223
scalarTransport, U-219
scale, U-214
shearStress, U-214
specieAdvectiveFlux, U-214
specieDiffusionFlux, U-214
specieFlux, U-214
specieReactionRates, U-217
staticPressureIncompressible, U-217
stopAtClockTime, U-217
stopAtEmptyClouds, U-216
stopAtFile, U-217
stopAtTimeStep, U-217
streamFunction, U-214
streamlinesLine, U-220
streamlinesPatch, U-220
streamlinesPoints, U-220
streamlinesSphere, U-220
subtract, U-215
surfaceInterpolate, U-214
timeStep, U-217
time, U-217
totalEnthalpy, U-214
totalPressureCompressible, U-217
totalPressureIncompressible, U-217
triSurfaceAverage, U-219
triSurfaceDifference, U-219
triSurfaceVolumetricFlowRate, U-219
tr, U-214
turbulenceFields, U-215
turbulenceIntensity, U-215
uniform, U-215
userTimeStep, U-217
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volAverage, U-216
volField, U-215
volIntegrate, U-216
vorticity, U-215
wallBoilingProperties, U-218
wallBoilingProperty, U-218
wallHeatFlux, U-215
wallHeatTransferCoeff, U-215
wallShearStress, U-215
writeCellCentres, U-215
writeCellVolumes, U-215
writeObjects, U-217
writeVTK, U-215
yPlus, U-215
post-processing
paraFoam, U-203

postSweepsLevelMultiplier keyword, U-130
potentialFoam solver, U-91
power post-processing, U-214
Pr keyword, U-231
preconditioner keyword, U-127, U-129
pRefCell keyword, U-132
pRefValue keyword, U-132
pressure keyword, U-63
pressureInletOutletVelocity

boundary condition, U-197
preSweepsLevelMultiplier keyword, U-130
printCoeffs keyword, U-237, U-240
processorWeights keyword, U-84
probeLocations keyword, U-221
probes post-processing, U-218, U-220
process

background, U-24, U-83
foreground, U-24

processor
boundary condition, U-152

processor
boundary condition, U-152

processorN directory, U-85
processorWeights keyword, U-85
profile keyword, U-40
project keyword, U-161
Properties window, U-205, U-206
Properties window panel, U-204
psiThermo model, U-230
psiuMulticomponentThermo model, U-230
PTT model, U-242
pureMixture

keyword entry, U-231

purgeWrite keyword, U-117
PVFoamReader

library, U-203

Q post-processing, U-214
qZeta model, U-239
Qdot post-processing, U-217
quadraticRamp keyword, U-200
quarterCosineRamp keyword, U-200
quarterSineRamp keyword, U-200

randomise post-processing, U-214
RAS

keyword entry, U-27, U-237
raw

keyword entry, U-117
reorderPatches utility, U-95
reactionRates post-processing, U-217
realizableKE model, U-239, U-240
reconstruct post-processing, U-214
reconstructPar utility, U-98
reconstructPar utility, U-88
redistributePar utility, U-98
refineMesh utility, U-94
refineWallLayer utility, U-95
refinementLevel utility, U-95
refinementRegions keyword, U-169
refinementRegions keyword, U-166, U-169
refinementSurfaces keyword, U-166, U-167
refineMesh utility, U-177
Refresh Times button, U-206
regionSolvers keyword, U-116
relative tolerance, U-128
relativeSizes keyword, U-172
relaxationFactors keyword, U-30
relaxed keyword, U-173
relTol keyword, U-65, U-127, U-128
remove keyword, U-176
removeFaces utility, U-95
removeObjects post-processing, U-217
Render View window, U-208
Render View window panel, U-207, U-208
renumberMesh utility, U-94
repeat keyword, U-200
Rescale button, U-32
Reset button, U-205
residualControl keyword, U-31, U-42
residuals

monitoring, U-223
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residuals post-processing, U-216, U-223
resolveFeatureAngle keyword, U-166, U-167
reverseRamp keyword, U-200
Reynolds number, U-27
rhoConst model, U-235
rhoPorousSimpleFoam solver, U-91
rhoTabulated model, U-235
rhoThermo model, U-230
RNGkEpsilon model, U-238, U-239
roots keyword, U-87
rPolynomial model, U-235
run

parallel, U-83
run directory, U-19, U-99
runTime

keyword entry, U-117
runTimeModifiable keyword, U-118

sammToFoam utility, U-94
Save Animation

menu entry, U-209
Save Screenshot

menu entry, U-209
scalarTransport post-processing, U-219
scale post-processing, U-214
scale keyword, U-200
scalePoints utility, U-184
scheduled

keyword entry, U-82
scientific

keyword entry, U-117
scotch

keyword entry, U-84
script

foamCleanCase, U-132
foamCloneCase, U-132, U-133
foamCorrectVrt, U-185
foamGet, U-136
foamInfo, U-39, U-196
foamSearch, U-120
make, U-71
wclean, U-77
wmake, U-71

Seed window, U-209
selectCells utility, U-95
set keyword, U-176
Set Ambient Color button, U-207
setAtmBoundaryLayer utility, U-92
setFields utility, U-92

setWaves utility, U-92
setConstraintTypes file, U-194
setFields utility, U-48
Settings

menu entry, U-208
shallowWaterFoam solver, U-91
shape, U-156
shearStress post-processing, U-214
ShihQuadraticKE model, U-238
shockFluid solver module, U-88
SI units, U-104
sigma keyword, U-48
SIMPLE

algorithm, U-30
SIMPLE keyword, U-30, U-31
SIMPLE

dictionary, U-132
simple

keyword entry, U-84, U-85
simpleGrading keyword, U-156
simulationType keyword, U-27, U-50, U-237
sine keyword, U-199
singleCellMesh utility, U-95
Slice

menu entry, U-34
Smagorinsky model, U-240
smapToFoam utility, U-96, U-226
smoother keyword, U-130
smoothSolver

keyword entry, U-127
snap keyword, U-164
snapControls keyword, U-164
snappyHexMesh utility, U-93
snappyHexMeshConfig utility, U-92
snappyHexMesh utility

background mesh, U-165
cell removal, U-168
cell splitting, U-166
mesh layers, U-170
meshing process, U-163
snapping to surfaces, U-170
span refinement, U-169

snappyHexMesh utility, U-163
snappyHexMeshDict file, U-164
snGradSchemes keyword, U-118
solid solver module, U-89
Solid Color

menu entry, U-207
solidDisplacementThermo model, U-230
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solidDisplacement solver module, U-58, U-89
solidDisplacementFoam solver, U-64
solidThermo model, U-230
solver

PDRFoam, U-91
adjointShapeOptimizationFoam, U-91
boundaryFoam, U-90
chemFoam, U-90
dsmcFoam, U-91
electrostaticFoam, U-91
financialFoam, U-91
foamMultiRun, U-17, U-90
foamRun, U-17, U-30, U-90
icoFoam, U-91
laplacianFoam, U-91
magneticFoam, U-91
mdEquilibrationFoam, U-91
mdFoam, U-91
mhdFoam, U-91
porousSimpleFoam, U-91
potentialFoam, U-91
rhoPorousSimpleFoam, U-91
shallowWaterFoam, U-91
solidDisplacementFoam, U-64
modular, U-17

solver keyword, U-29, U-65, U-116, U-127
solver module

VoFSolver, U-90
XiFluid, U-88
compressibleMultiphaseVoF, U-89
compressibleVoF, U-89
film, U-89
fluidSolver, U-90
fluid, U-88
functions, U-90
incompressibleDenseParticleFluid, U-88
incompressibleDriftFlux, U-89
incompressibleFluid, U-20, U-88
incompressibleMultiphaseVoF, U-89
incompressibleVoF, U-44, U-89
isothermalFilm, U-89
isothermalFluid, U-89
movingMesh, U-90
multicomponentFluid, U-88
multiphaseEuler, U-89
multiphaseVoFSolver, U-90
shockFluid, U-88
solidDisplacement, U-58, U-89
solid, U-89

twoPhaseSolver, U-90
twoPhaseVoFSolver, U-90

solver relative tolerance, U-128
solver tolerance, U-128
solvers keyword, U-127
SpalartAllmaras model, U-238, U-239
SpalartAllmarasDDES model, U-240
SpalartAllmarasDES model, U-240
SpalartAllmarasIDDES model, U-241
specie keyword, U-235
specieAdvectiveFlux post-processing, U-214
specieDiffusionFlux post-processing, U-214
specieFlux post-processing, U-214
specieReactionRates post-processing, U-217
sphere keyword, U-175
spline

keyword entry, U-154
splitBaffles utility, U-95
splitCells utility, U-95
splitMeshRegions utility, U-95
square keyword, U-199
squarePulse keyword, U-199
SSG model, U-238, U-239
star3ToFoam utility, U-94
star4ToFoam utility, U-94
startFace keyword, U-149
startFrom keyword, U-29, U-116
starToFoam utility, U-181
startTime

keyword entry, U-29, U-116
startTime keyword, U-29, U-116
staticPressureIncompressible post-processing, U-

217
steadyParticleTracks utility, U-96
steadyState

keyword entry, U-29, U-30, U-120
Stereolithography (STL), U-163
stitchMesh utility, U-95
stopAt keyword, U-116
stopAtClockTime post-processing, U-217
stopAtEmptyClouds post-processing, U-216
stopAtFile post-processing, U-217
stopAtTimeStep post-processing, U-217
strategy keyword, U-84
streamFunction post-processing, U-214
streamlinesLine post-processing, U-220
streamlinesPatch post-processing, U-220
streamlinesPoints post-processing, U-220
streamlinesSphere post-processing, U-220
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stress analysis of plate with hole, U-57
Style window panel, U-207
subsetMesh utility, U-95
subsetMesh utility, U-180
subtract post-processing, U-215
surface keyword, U-176
surface mesh, U-163
surfaceAdd utility, U-96
surfaceAutoPatch utility, U-96
surfaceBooleanFeatures utility, U-96
surfaceCheck utility, U-96
surfaceClean utility, U-96
surfaceCoarsen utility, U-96
surfaceConvert utility, U-96
surfaceFeatureConvert utility, U-96
surfaceFeatures utility, U-97
surfaceFind utility, U-97
surfaceHookUp utility, U-97
surfaceInertia utility, U-97
surfaceInterpolate post-processing, U-214
surfaceLambdaMuSmooth utility, U-97
surfaceMeshConvert utility, U-97
surfaceMeshExport utility, U-97
surfaceMeshImport utility, U-97
surfaceMeshInfo utility, U-97
surfaceMeshTriangulate utility, U-97
surfaceOrient utility, U-97
surfacePointMerge utility, U-97
surfaceRedistributePar utility, U-97
surfaceRefineRedGreen utility, U-97
surfaceSplitByTopology utility, U-97
surfaceSplitByPatch utility, U-97
surfaceSplitNonManifolds utility, U-97
surfaceSubset utility, U-98
surfaceToPatch utility, U-98
surfaceTransformPoints utility, U-98
surfaceFeatures utility, U-167
symGaussSeidel

keyword entry, U-129
symmetry

boundary condition, U-151
symmetry

boundary condition, U-151
symmetryPlane

boundary condition, U-151, U-152
system directory, U-99

table keyword, U-199
tableFile keyword, U-199

Tcommon keyword, U-233
temporalInterpolate utility, U-96
tetgenToFoam utility, U-94
text box

Opacity, U-207
thermodynamics keyword, U-235
thermoType keyword, U-229
thickness keyword, U-172
Thigh keyword, U-233
time

control, U-115
time post-processing, U-217
time step, U-50
timeFormat keyword, U-117
timePrecision keyword, U-117
timeScheme keyword, U-118
timeStamp

keyword entry, U-82
timeStampMaster

keyword entry, U-82
timeStep post-processing, U-217
timeStep

keyword entry, U-30, U-117
Tlow keyword, U-233
ToC utility, U-138
tolerance

solver, U-128
solver relative, U-128

tolerance keyword, U-65, U-127, U-128, U-170
Toolbars

menu entry, U-207
topoSet utility, U-95
totalEnthalpy post-processing, U-214
totalPressure

boundary condition, U-197
totalPressureCompressible post-processing, U-217
totalPressureIncompressible post-processing, U-

217
Tr keyword, U-232
tr post-processing, U-214
traction keyword, U-63
transformPoints utility, U-95
transport keyword, U-230, U-235
triSurfaceAverage post-processing, U-219
triSurfaceDifference post-processing, U-219
triSurfaceVolumetricFlowRate post-processing, U-

219
truncatedCone keyword, U-175
Ts keyword, U-231
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turbulence
dissipation, U-27
kinetic energy, U-27

turbulence keyword, U-27, U-237, U-240
turbulenceFields post-processing, U-215
turbulenceIntensity post-processing, U-215
turbulent

intensity, U-28
turbulentBL

keyword entry, U-40
tutorials

backward-facing step, U-20
breaking of a dam, U-44
stress analysis of plate with hole, U-57

twoPhaseSolver solver module, U-90
twoPhaseVoFSolver solver module, U-90
type keyword, U-230

uncollated
keyword entry, U-85

uncorrected
keyword entry, U-125

uniform post-processing, U-215
uniformFixedValue

boundary condition, U-199
uniformTable keyword, U-200
uniformValue keyword, U-199
union keyword, U-177
UnitConversions keyword, U-114
units

base, U-104
conversion, U-105
dimensional, U-103
of measurement, U-105
SI, U-104
Système International, U-104
United States Customary System, U-104
USCS, U-104

unitSet keyword, U-114
upwind

keyword entry, U-122
upwind differencing, U-51
USCS units, U-104
userTimeStep post-processing, U-217
utility

ToC, U-138
adiabaticFlameT, U-98
ansysToFoam, U-93
applyBoundaryLayer, U-92

autoPatch, U-94
blockMesh, U-153
blockMesh, U-93
boxTurb, U-92
ccm26ToFoam, U-93
cfx4ToFoam, U-181
cfx4ToFoam, U-93
changeDictionary, U-92
checkMesh, U-182
checkMesh, U-94
chemkinToFoam, U-98
collapseEdges, U-95
combinePatchFaces, U-95
createNonConformalCouples, U-151
createNonConformalCouples, U-94
createPatch, U-179
createZones, U-177
createBaffles, U-94
createExternalCoupledPatchGeometry, U-92
createPatch, U-94
createZones, U-94
datToFoam, U-93
decomposePar, U-83, U-85
decomposePar, U-98
deformedGeom, U-94
dsmcInitialise, U-92
engineCompRatio, U-95
engineSwirl, U-92
ensightFoamReader, U-227
equilibriumCO, U-98
equilibriumFlameT, U-98
extrude2DMesh, U-93
extrudeMesh, U-93
extrudeToRegionMesh, U-93
faceAgglomerate, U-92
flattenMesh, U-94
fluent3DMeshToFoam, U-93
fluentMeshToFoam, U-181
fluentMeshToFoam, U-93
foamDictionary, U-133
foamFormatConvert, U-86
foamListTimes, U-40, U-132
foamPostProcess, U-210
foamToC, U-138
foamUnits, U-140
foamVTKSeries, U-226
foamDataToFluent, U-96, U-226
foamDictionary, U-98
foamFormatConvert, U-98
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foamListTimes, U-98
foamMeshToFluent, U-93
foamPostProcess, U-95
foamSetupCHT, U-92
foamToC, U-98
foamToEnsightParts, U-96, U-226
foamToEnsight, U-96, U-226
foamToGMV, U-96, U-226
foamToStarMesh, U-93
foamToSurface, U-93
foamToTetDualMesh, U-96, U-226
foamToVTK, U-96, U-226
gambitToFoam, U-181
gambitToFoam, U-93
gmshToFoam, U-93
ideasToFoam, U-181
ideasUnvToFoam, U-93
insideCells, U-94
kivaToFoam, U-93
mapFields, U-187
mapFieldsPar, U-92
mapFields, U-92
mdInitialise, U-92
mergeBaffles, U-94
mergeMeshes, U-94
mirrorMesh, U-94
mixtureAdiabaticFlameT, U-98
mshToFoam, U-93
netgenNeutralToFoam, U-93
noise, U-95
objToVTK, U-94
particleTracks, U-96
patchSummary, U-98
pdfPlot, U-96
plot3dToFoam, U-94
polyDualMesh, U-94
reorderPatches, U-95
reconstructPar, U-88
reconstructPar, U-98
redistributePar, U-98
refineMesh, U-177
refineMesh, U-94
refineWallLayer, U-95
refinementLevel, U-95
removeFaces, U-95
renumberMesh, U-94
sammToFoam, U-94
scalePoints, U-184
selectCells, U-95

setFields, U-48
setAtmBoundaryLayer, U-92
setFields, U-92
setWaves, U-92
singleCellMesh, U-95
smapToFoam, U-96, U-226
snappyHexMesh, U-163
snappyHexMeshConfig, U-92
snappyHexMesh, U-93
splitBaffles, U-95
splitCells, U-95
splitMeshRegions, U-95
star3ToFoam, U-94
star4ToFoam, U-94
starToFoam, U-181
steadyParticleTracks, U-96
stitchMesh, U-95
subsetMesh, U-180
subsetMesh, U-95
surfaceFeatures, U-167
surfaceAdd, U-96
surfaceAutoPatch, U-96
surfaceBooleanFeatures, U-96
surfaceCheck, U-96
surfaceClean, U-96
surfaceCoarsen, U-96
surfaceConvert, U-96
surfaceFeatureConvert, U-96
surfaceFeatures, U-97
surfaceFind, U-97
surfaceHookUp, U-97
surfaceInertia, U-97
surfaceLambdaMuSmooth, U-97
surfaceMeshConvert, U-97
surfaceMeshExport, U-97
surfaceMeshImport, U-97
surfaceMeshInfo, U-97
surfaceMeshTriangulate, U-97
surfaceOrient, U-97
surfacePointMerge, U-97
surfaceRedistributePar, U-97
surfaceRefineRedGreen, U-97
surfaceSplitByPatch, U-97
surfaceSplitByTopology, U-97
surfaceSplitNonManifolds, U-97
surfaceSubset, U-98
surfaceToPatch, U-98
surfaceTransformPoints, U-98
temporalInterpolate, U-96
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tetgenToFoam, U-94
topoSet, U-95
transformPoints, U-95
viewFactorsGen, U-92
vtkUnstructuredToFoam, U-94
writeMeshObj, U-94
zeroDimensionalMesh, U-93
zipUpMesh, U-95

v2f model, U-239, U-240
value keyword, U-26, U-196
valueFraction keyword, U-196
valueMulticomponentMixture

keyword entry, U-231
values keyword, U-48
VCR Controls menu, U-31, U-205
vector class, U-103
version keyword, U-102
vertices keyword, U-23, U-153
veryInhomogeneousMixture keyword, U-231
View menu, U-204, U-207
View (Render View) window panel, U-25
View Settings

menu entry, U-207
viewFactorsGen utility, U-92
viscosity

kinematic, U-27
viscosityModel keyword, U-49
viscosityModel keyword, U-27, U-242, U-243
VoFSolver solver module, U-90
volAverage post-processing, U-216
volField post-processing, U-215
volIntegrate post-processing, U-216
vorticity post-processing, U-215
vtk

keyword entry, U-117
vtkUnstructuredToFoam utility, U-94
vtkPVFoam

library, U-203

WALE model, U-241
wall

functions, U-28
wall

boundary condition, U-47, U-150, U-152
wallBoilingProperties post-processing, U-218
wallBoilingProperty post-processing, U-218
wallHeatFlux post-processing, U-215
wallHeatTransferCoeff post-processing, U-215

wallShearStress post-processing, U-215
wallDist keyword, U-119
wclean script, U-77
wedge

boundary condition, U-150, U-162
window

Options, U-208
Pipeline Browser, U-24, U-204
Properties, U-205, U-206
Render View, U-208
Seed, U-209

window panel
Camera, U-208
Color Arrays, U-208
Color Legend, U-207
Color Palette, U-208
Color Scale, U-206
Display, U-24, U-204, U-206
General, U-208
Information, U-204
Mesh Parts, U-24
Parameters, U-205
Properties, U-204
Render View, U-207, U-208
Style, U-207
View (Render View), U-25

Wireframe
menu entry, U-207

WM_ARCH
environment variable, U-75

WM_ARCH_OPTION
environment variable, U-75

WM_CC
environment variable, U-76

WM_CFLAGS
environment variable, U-76

WM_COMPILE_OPTION
environment variable, U-76

WM_COMPILER
environment variable, U-76

WM_COMPILER_LIB_ARCH
environment variable, U-76

WM_COMPILER_TYPE
environment variable, U-76

WM_CXX
environment variable, U-76

WM_CXXFLAGS
environment variable, U-76

WM_DIR
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environment variable, U-76
WM_LABEL_OPTION

environment variable, U-76
WM_LABEL_SIZE

environment variable, U-76
WM_LDFLAGS

environment variable, U-76
WM_LINK_LANGUAGE

environment variable, U-76
WM_MPLIB

environment variable, U-76
WM_OPTIONS

environment variable, U-76
WM_OSTYPE

environment variable, U-76
WM_PRECISION_OPTION

environment variable, U-76
WM_PROJECT

environment variable, U-75
WM_PROJECT_DIR

environment variable, U-75
WM_PROJECT_INST_DIR

environment variable, U-75
WM_PROJECT_USER_DIR

environment variable, U-75
WM_PROJECT_VERSION

environment variable, U-75
WM_THIRD_PARTY_DIR

environment variable, U-75
wmake script, U-71
write keyword, U-177
writeCellCentres post-processing, U-215
writeCellVolumes post-processing, U-215
writeMeshObj utility, U-94
writeObjects post-processing, U-217
writeVTK post-processing, U-215
writeCompression keyword, U-117
writeControl keyword, U-30, U-51, U-117
writeFormat keyword, U-117
writeInterval keyword, U-30, U-117
writeNow

keyword entry, U-116
writePrecision keyword, U-117

XiFluid solver module, U-88
XiReactionRate post-processing, U-217

yPlus post-processing, U-215

zero keyword, U-199
zeroDimensionalMesh utility, U-93
zeroGradient

boundary condition, U-196
zipUpMesh utility, U-95
zone

of a mesh, U-174
zones keyword, U-48
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